![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1738895064-GWgv3HtvXeJZWyc0qRLlHcSwWkbqzV3z-0-51739f926b0742cccae1f45d45ed7c92)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1738895064-dnnsqGY1pm0h7yF3gAN4RwwGuN8tdSXd-0-12dea293a529d67f50bb67dc506771e4)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1738895064-i5f8cxxNjEx1sVPK7aQFHp7s1v59Ig60-0-e8effb946275c1ee74dc911521005f48)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1738895064-7IXGPdvO02D8z7rhhqGyjSzcRra6QA4o-0-543eb9db24060b8710338111929eb018)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1738895064-mArfumYKavTqy15rU3WfhUrDqFoKPEXH-0-14755e9981e591ed07d46d4828d5fa3f)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1738895064-eKg3an9ph4cdtE5urEB2FWRRWzG5s6p3-0-9bc15554e172049fd28b03fe92c47d9d)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1738895064-bmOSJfYbCdq55s52Xp0tlRdcFIIsDB8B-0-58a19043762ca7f0de8c6cc7dd4270a0)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1738895064-wZhEPZMiDybGuqlCtcetKsUfzzRzbf23-0-2ded22cbc37d34b76cd9b33d421423aa)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1738895064-s7zx75Kf2EpPT8i5j5R6FP5g1otCUVmB-0-7d8538d10b1e6a3c20683625458758af)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1738895064-wyzKJUgDJFFZSkmcrQAEkpRlcgVQSS8O-0-a02fd1493b2b1f4da934bb1cb591069b)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1738895064-C7iW22yNBz8TPd9cydYFvL7t5ebMvRjN-0-9dac3cce175e5ce770c9c03b13e59eb8)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1738895064-AphlKkx5wXbM986jkieyeZvYLYcepcv2-0-ac73f78679d50adbb539fb815219ba15)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1738895064-slzftWHHIdVqEc1xwxkc0AUV8cOpaVGH-0-24bc4e1b5a645a71f888aff0b804eb7e)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1738895064-XjRyUmZ9kZ33M4vx11FNyyMILp0NZv4s-0-030f07afd7b941dd3bf48833af487e9e)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1738895064-93MztJUgcle6qsDH5dIHio8i4HJ4TFy8-0-99bea60e92b32704c4b157c69b10c862)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1738895064-zq0Wj629LhbzmSEhnBtz0aePDBHT3YmV-0-5534fbebc27a625f040fddd84db2b083)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1738895064-jZ0wFrBFNrQfM9k8x01yIYmLE6VW3Vag-0-97226f1556ac7d332d0562b1ff437a9f)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1738895064-UsztVZOtDqVlyWjlgUzkLbqaYd0tMHhT-0-7282b094c9004f641bdcd53003dc9f59)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1738895064-cFiMB2FRS73P882RXIcTwFWbKAy7Fg0B-0-47948b5aeebd88aaf19012fa54cba694)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1738895064-jVMfGP6LTJ1gPFH1i4QqbWq4ZZ3PyPlz-0-dc632fe47820fb191fd3fe0580fa6453)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1738895064-0INy8XL0KixTXr4Q6iUCcZ0Llenci71g-0-6d2f71e00f8a28c6c3c7124ec2936ba5)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1738895064-Fw6tUljFvu7pfxiOhjhz3RfJcVQExN0r-0-106648c1344d01cf14957d5d58cc380b)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1738895064-10hd8INPIz3DUdIqAaqvo8XPsLhPGVfW-0-efc64bfc87dd06c53d165dc9c8595d7c)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1738895064-dVh2nzV2rkmwEeQwt2qiyuyMKkUSJFEq-0-8e28a00c0736eb6bc083855cc467b080)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1738895064-rGDakXF7QkXp7ddJd4Gb45Qsy7MkOobi-0-0b72cb8af523b5b5ea22fbc7053db263)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1738895064-KmOKdti0ZNxKOTIQDFeaYZEfcwbh8N2r-0-a90ac2a506d9a22dae89a02152dd3a30)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1738895064-tsP92enxGDF5QlBF7ZgDd8vnBUGpban0-0-911ddf35b62875a238f7a9ac1332b672)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1738895064-vwi51OX2xPVHut1QpPtqan8qSjy4Mcm9-0-fc7f8e15dc7b8d7f7a1d2f2cc4385ba2)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1738895064-4DZ46i9zndv0cllCIbafhD5SGxbpijbO-0-1e1a2fcd9eed59b7924e0b4993c82035)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1738895064-HsuJd5rqTNouVhxrbN1si8AbjfddsVBD-0-b46fa9be1d39d86db1f75859f945c97b)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1738895064-JqwVSCI7MBXj67wcOw90MK9PUjeGGv4z-0-2f9eb0c2422c5170efe8ee89fee5837c)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1738895064-9a1Uhx28Wn5osJhGhlIRyxSMlp7A5s4U-0-dc64d87d89f8d2bace2fbd039fcd7000)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1738895064-PvjO2aS7yhF0SwespKLvj9zI1LcqELsx-0-8dea6a83a8b42726c0457769fcba3231)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1738895064-A3PWHtlF9Y3x0ARzkxaphmIKKcWCJv1v-0-6b6d455298816398d1966c3b5d2a9e96)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1738895064-hvJM0t8odG9MCZ0gYuuWnONc0SgEdPLD-0-19ff7ab58fe47887df5ed76e9d9ef4ce)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)