![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
11.3 名校考研真题详解
解答题
679.证明:若K(x,t)在D=[a≤x≤b,a≤t≤b]上连续,u0(x)在[a,b]上连续,且对任意x∈[a,b],令
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2062.jpg?sign=1738895910-tdFaDoL2CUsAMuegQtWS1vIYIbre3OpL-0-dad503dedb703f4cfcfc4710e2efa116)
则函数列{un(x)}在[a,b]上一致收敛.[东北师范大学研]
证明:K(x,t)在闭区域D上连续,从而在D上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2064.jpg?sign=1738895910-bOzF9Ye6m9ahTjLcNiCLdaEYN3sy5IaZ-0-996a7905b1326ab634ef81fc09abc9c3)
u0(x)在[a,b]上连续,从而在[a,b]上有界,即使得对
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2066.jpg?sign=1738895910-oCDjge91NQ36js6t1yufa98BsKUOUC4z-0-bdec0149974edb6efe61785e5ce6bb75)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2068.jpg?sign=1738895910-wHM0e5Js6acQHVNMGkstTwwOzXMmXpf4-0-abc2a0171f37c28b92c045560164e0ba)
由数学归纳法易知,由
及柯西准则知un(x)在[a,b]上一致收敛.
683.证明:在任何有穷区间上一致收敛,而在任何一点都不绝对收敛.[华中科技大学研]
证明:(1)对任何有穷区间,使得对一切x∈I有
①在I上一致收敛;
②对单调减且
,即是一致有界的.
由阿贝尔判别法知在任何有穷区间I上,级数一致收敛.
(2)对由于
收敛,
发散,故
不绝对收敛.
685.设函数f(x)在区间[a,b]上有连续的导函数及a<β<b.对于每一个自然数
定义函数
①
试证:当n→+∞时函数序列在区间[a,β]上一致收敛于f'(x).[中国科学院研]
证明:f'(x)在[a,b]上连续,从而在[a,b]上一致连续,即对对
时
对,取
,则当n>N时,对一切
由①式,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2093.jpg?sign=1738895910-vB2m6ebh1sLSVIk8fpAbgBPT7xmNMPP7-0-25f058d86fe2f48700102b6336c146f0)
所以函数列fn(x)在[a,β]上一致收敛于f'(x).
687.(1)求证:在[0,1]上处处收敛,但非一致收敛;
(2)f(x)在(-∞,+∞)内处处有任意阶导数,级数…
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2096.jpg?sign=1738895910-o2camMaUIZaUVUeQTwo3jEmPi2sIqsOm-0-638f08b54246bf438232deb27d511ab6)
按二个方向在(-∞,+∞)内一致收敛.试求级数的和函数F(x).[同济大学研]
证明:(1)
对均收敛,所以
收敛,
当x=1时,.亦收敛.
所以在[0,1]上处处收敛.
但
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2103.jpg?sign=1738895910-Tkzcymn91jZxov87NOctl2JfyDMULEA8-0-cd221d6f33d86a0e4ae66b176e0cdc79)
所以在[0,1]上非一致收敛.
(2)f(x)有各阶导数,自然各阶导数都连续,该级数逐项求导之后,级数仍是它自己,因而一致收敛,满足逐项求导三条件,所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2105.jpg?sign=1738895910-UKs4qyD9S2oiWs8YiggGId5Nh9GVlYwH-0-a9ced6e65f4576c8412567096419d612)
两边同时积分得(其中c1=ec为常数),令x=0,知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2107.jpg?sign=1738895910-a7ZDQjLzSWFbZECFTHfNGOdJRfxunoij-0-c1d0365ab571da5a055cf156cf8f617c)
722.写出在x=0点展开的Taylor级数的前五项系数,并指出该级数的收敛区域.[北京师范大学研]
解:令,因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2110.jpg?sign=1738895910-ROq7eAhI1BLox99paYIs61wOflQKpM4c-0-3f7ba3656abe4ef49c1f2b5973b0b994)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2111.jpg?sign=1738895910-SyIskKyu5Npu50eMSjlSJUskHqBQ2Lrf-0-4f0702a2c95dd5f95a39ed1f72c555cb)
则在x=0点展开的泰勒级数前5项为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2113.jpg?sign=1738895910-1zuHUuHfJf9f1kkPN33Wx070BnnGu8se-0-40562515da27c1cb7f224a921a679c79)
另外,由于在(-∞,+∞)收敛,因此该级数的收敛域为(-∞,+∞).
729.利用数项级数计算积分
[厦门大学研]
解:注意到
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2118.jpg?sign=1738895910-kLgEZ09xQGnLHKUpWXleKUacffnLz1lx-0-072abe9e31a0a11d9870c8c31cbe0193)
748.判断级数的收敛性并给出证明.[北京大学研]
解:由于故
而
∴由归结原则
因此由正项级数的比较判别法收敛,从而
也收敛.
1.求的收敛域.[大连理工大学2006研]
解:因为,当x=1时,
不趋于0,所以当
x=1时该级数发散.当x=-1时,
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2129.jpg?sign=1738895910-aPICm4uCmqpYA2iqzr0SaRHLXCgLEKff-0-41cf3585c3e1196d0fe4875a80e549d9)
为交错级数,所以收敛.故的收敛域为[-1,1).
1.求幂级数的收敛域及和函数.[西安电子科技大学研]
解:由于,所以收敛半径为
,易知其收敛域为
.记
,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2136.jpg?sign=1738895910-Wx6SAtK0KnEKRK269uf8eBugn8ZCMtdB-0-3797f58d3f36728c968e3def12a3a54e)
所以.
1.求幂级数的收敛域及和函数.[华南理工大学2006研]
解:因为,所以R=1.当R=±1时,
均收敛,所以[-1,1]为其收敛域,在[-1,1]内可以逐项求导、逐项求积分,因此
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2141.jpg?sign=1738895910-n5ukKfYGl97HE8nhATSL6GSD7ULSVkVL-0-a4c8e887d1a47462e5c316e28ef60af4)
令,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2143.jpg?sign=1738895910-taCtgSSzQaYhqq46LuBjfCMzG3qQngw7-0-631e903d3393c65a055377bb62fe9caa)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2144.jpg?sign=1738895910-Y8hrOmCSMgl308fTQvOls3bNw3oEz2DE-0-c45d0cf8f0b7007696b73115a7d0dcda)
1.求的Mac1aurin级数展开式.[华东师范大学2006研]
解:由于,所以
,从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2148.jpg?sign=1738895910-WULxlweLoAMpZE45Ln5euG6RHCZSpQ0X-0-8ee97aa00356ef27becb8fb23c47a681)
1.求在x=0处的幂级数展开式及收敛半径.[中南大学研]
解:由,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2151.jpg?sign=1738895910-fuQHJTY5a0wxez2xSB13DLv3LlBQKluo-0-99309f7b46d47937430848f15613e01a)
易知其收敛半径.
1.证明:当时,
在(-∞,+∞)上一致收敛.[东北大学研]
证明:易知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2155.jpg?sign=1738895910-dv5nRmDs8eViynJ7MyygIi4SlhvP1pWI-0-481a1c2a43550c1a976f384144898ea5)
令,由于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2157.jpg?sign=1738895910-5OSSgNl0bKaUknysO2fwC13CNWbg8W1G-0-8ee7f1dede491241ca1a4467c8b3b194)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2158.jpg?sign=1738895910-OjRA1FPrFh0mslNN60OzJHKhHmtYYI7f-0-5fadff992ce4c07cc9c3564c2d505877)
故
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2159.jpg?sign=1738895910-Poc3SbanI9u7T7Q1CnIiPDlNVbLis6Nr-0-6ef1958c5e63d1f8da7f0ce869f05b05)
所以在(-∞,+∞)上一致收敛.
1.设f(x)在区间[a,b]上连续,f(x)>0.证明:函数列在[a,b]上一致收敛于1.[华东师范大学研]
证明:因为f(x)在区间[a,b]上连续,所以存在,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2163.jpg?sign=1738895910-zAr6PAgVkllV0WNQjDAfztWF66qTg5AT-0-06fa871a3a4d4e8de433123f40654165)
,从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2164.jpg?sign=1738895910-MBGwyRmB9W55U3cWcE17rDP2t9qdBs60-0-aa090133ac3aef440d5cc521b7b0433a)
因为,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2167.jpg?sign=1738895910-1xqhzy2cMuE6Q0pOOS5hKBRQL6bOn6jQ-0-e8c9175818ffadcc9bd952a92cb6a4bb)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2168.jpg?sign=1738895910-NnQKPEm40ysK8IqrB2Fy3mVJ5hSTmgyY-0-0f85959a942fa2fc9c9398b1ff71eca2)
即函数列在[a,b]上一致收敛于1.
1.设函数un(x)在闭区间[a,b]上连续(n=1,2,3,…),级数在开区间(a,b)内一致收敛.证明:函数
在闭区间[a,b]上一致连续.[北京交通大学2006研、深圳大学2006研]
证明:由于级数在开区间(a,b)内一致收敛,所以对任意的
,存在N>0,使得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2174.jpg?sign=1738895910-m0qDNzoezH24S2eHzOT1N79I9GfpAMid-0-d79eca2f0b1094f71c00b48a51f50e8d)
由于函数在闭区间[a,b]上连续(n=1,2,3,…),在上式中分别令
有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2177.jpg?sign=1738895910-q5qI3tp3nS9shmlMKYHuPVpRsPH6iRQy-0-cfcc580aee2b6a3d80083e1329b576ed)
从而有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2178.jpg?sign=1738895910-34jZ6eWsXs0c862OvBNrRGgPFKYz4VVT-0-e05be0e90d786bcc000f74409e806489)
即在闭区间[a,b]上一致收敛.故函数
在闭区间[a,b]上一致连续.
1.设函数f(x)在(-∞,+∞)上有任意阶导数,且导数函数列在(-∞,+∞)上一致收敛于
.证明:
[南开大学2006研]
证明:由于在(-∞,+∞)上一致收敛于φ(x),从而
即
在(-∞,+∞)上一致收敛,由一致收敛函数列的可微性质得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2187.jpg?sign=1738895910-Su6voW8hD2VqrAMhIIRYctRZVBNsSafY-0-7155b72cae3e56985032086bdcacd028)
于是.又因为φ(0)=1,所以C=1,故
1.设,计算积分
[江苏大学2006研]
解:由于,又
收敛,故由Weierstrass判别法知
在
(-∞,+∞)上一致收敛.从而由一致收敛函数项级数的可积性知
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2195.jpg?sign=1738895910-aytg7jZ1Y45DqUs9AbXOcAUjnFBnWXsN-0-f000ac26025826e29b2d5ef946b15914)