![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第五届全国大学生数学竞赛预赛(2013年非数学类)
试题
一、解答下列各题(本题共4个小题,每题6分,共24分)
1.求极限.
2.证明广义积分不是绝对收敛的.
3.设函数y=y(x)由x3+3x2y-2y3=2所确定,求y(x)的极值.
4.过曲线上的点A作切线,使该切线与曲线及x轴所围成的平面图形的面积为
,求A点的坐标.
二、(12分)计算定积分.
三、(12分)设f(x)在x=0处存在二阶导数f″(0),且,证明:级数
收敛.
四、(10分)设|f(x)|≤π,f′(x)≥m>0(a≤x≤b).证明.
五、(14分)设Σ是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0031_0009.jpg?sign=1739295719-UJt376iMlDmPEli71wyDUZf0ZDDSL5qZ-0-b36211d3120907941394b3a28e98b2ea)
试确定曲面Σ,使得积分I的值最小,并求该最小值.
六、(14分)设,其中a为常数,曲线C为椭圆x2+xy+y2=r2,取正向.求极限
.
七、(14分)判断级数的敛散性,若收敛,求其和.
参考答案
一、1.解 因为.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0031_0014.jpg?sign=1739295719-XcqRLGhPYnL1DzjAInrbwDpDrBwYxkt3-0-e99f4e6a92d4c4b2398b43bbd019b404)
2.证 记,只要证明
发散.因为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0004.jpg?sign=1739295719-wS9fzpiVDDGQXDwt64IvObfFbncAlqU7-0-b3d8103f4df3bc2d6f112dfdd2ba5e06)
而发散,故
发散.
3.解 方程两边对x求导,得
3x2+6xy+3x2y′-6y2y′=0,
故,令y′=0,得x(x+2y)=0⇒x=0或x=-2y.
将x=0和x=-2y代入所给方程,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0008.jpg?sign=1739295719-dRbN3gf5GQZGnrucwRjy3zhVF6xAs3is-0-4d46323a878d62a17af6e1c37d6abcf4)
又
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0009.jpg?sign=1739295719-Mmgxs8Wj1CZ4lLj1kJbWor0dRlJw6Jvn-0-7d01875965492ba85c3e77a945e80cf0)
故y(0)=-1为极大值,y(-2)=1为极小值.
4.解 设切点A的坐标为,曲线过A点的切线方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0011.jpg?sign=1739295719-eoGrP0Pamd5cvykor3kvgZFZqbsr7Cog-0-751219bf9fd67b8c2ef7fc55f7fd53ec)
令y=0,由上式可得切线与x轴交点B的横坐标x0=-2t.设A在x轴上的投影点为C.如题4图所示平面图形△ABC的面积-曲边梯形OCA的面积
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0012.jpg?sign=1739295719-6kkCGoCYHNbnuNmJuk2f8ShRtDBP7Ctq-0-0ffe86e48589d423802ba575dae80879)
故A的坐标为(1,1).
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0013.jpg?sign=1739295719-yqx6t1Zb8X1VQtsco29CZYoC3KYGoVIl-0-50705c9b6c59d48c504cfc161fc04bee)
题4图
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0014.jpg?sign=1739295719-FE6eEvWX5sWGEqu3VmmYbTZEpj0wmcJy-0-8e705f7043ff5f0d0cd0a15f1601f160)
三、证 由于f(x)在x=0处连续,且,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0002.jpg?sign=1739295719-MuCO4hgoTtfFzaL2CxgaBnoOSRNcWNjL-0-6a08ac1f4efbab3e59ffc39836915ae0)
应用洛必达法则,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0003.jpg?sign=1739295719-uWrjnI5NIsyuGp6HnxGLEiGLv6gSKjkr-0-f93c27ef51139d770d0d6dab94b89802)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0004.jpg?sign=1739295719-PX8XzecN9wfHMPOmWIMWNw2UpSQekcBU-0-3859b9c028b0fae369550df5b37d2a21)
由于级数收敛,从而
收敛.
四、证 解法1 因为f′(x)≥m>0(a≤x≤b),所以f(x)在[a,b]上严格单增,从而有反函数.
设A=f(a),B=f(b),φ是f的反函数,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0007.jpg?sign=1739295719-PLfiyxQpbRzB0kLmKic6LsfgTE68XuV0-0-a55e70b96a03a1bd6e5a343981f9b1f1)
又f(x)≤π,则-π≤A<B≤π,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0008.jpg?sign=1739295719-08GOMFESnmhq2iLJUKt7X2H8vLzMhw4n-0-9611acf5a7dd0ff3eb0c0b1dbc31476c)
解法2
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0009.jpg?sign=1739295719-Thq4Liep4THBOhsfObqJV68mGbZ4Kr0l-0-3e1dc9a1bea53b4af92241634942504a)
五、解 记Σ围成的立体为V,由高斯公式,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0010.jpg?sign=1739295719-gC0tpicVlyyxsar4ZDC3Cw59Z4ws9bbg-0-a1ba26b8e15d2442a35018b4b38c61c9)
为了使I达到最小,就要求V是使得x2+2y2+3z2-1≤0的最大空间区域,即
V={(x,y,z)|x2+2y2+3z2≤1}.
所以V是一个椭球,Σ是椭球V的表面时,积分I最小.
为求该最小值,作变换
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0011.jpg?sign=1739295719-h2UFS9RYZfFAqBAfh6xHF5ZUlAlxN6KT-0-45058c8ffda55c4412b42429e6f713fc)
则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0013.jpg?sign=1739295719-NZe0htcUO9ZbfGrHyamNFafMukRsKokZ-0-bb75e6588ef3e82adb0cc6e983db7ddb)
使用球坐标变换,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0014.jpg?sign=1739295719-nGqGSvFnykOgOH27VeujtSum2am77YUn-0-52b2f7e66e6c882e9a17cf3ab1ae993c)
六、解 作变换
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0015.jpg?sign=1739295719-OWrjX3bmHV9o9uUY4ZR6iQ4wqswMI7oO-0-55f4c9d427ef27ae38036a36c539d98b)
曲线C变为uOv平面上的曲线,也是取正向,且有x2+y2=u2+v2,ydx-xdy=vdu-udv,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0002.jpg?sign=1739295719-mxHcnyq1bxtNAErlochUeSzXedvqkkvs-0-3502177bda63466d3f7c8b01c4cd8935)
作变换
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0003.jpg?sign=1739295719-IeoTpSK3q0LvuEjtt4m4R7PY9J96Af8U-0-94dcf00ebebfca2fd3d3c72f089ac83a)
则有,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1739295719-FbCk07EE9OaycgeyG88QGXEuISiWVpyX-0-7120a4d2259502a987d69500f409326d)
其中.
因此当a>1和a<1时,所求极限分别为0和+∞.
而当a=1时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0007.jpg?sign=1739295719-ySPSO6zNhtRzQCL5SgxqQNFUS1aYW7x3-0-9f560c19ae51353e9c6518cae68b3576)
故所求极限为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0008.jpg?sign=1739295719-itDnw2CnP3fX0GekKTeDMmXNyqSyixK4-0-f18101dff3bcfa5ebb0854a36d2e098e)
七、解 (1)记.因为n充分大时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0010.jpg?sign=1739295719-RY363MESEYhXscSfe0fXaMjxOnZN3gsG-0-66fe3151e48fd65743acff27074aa709)
所以,而
收敛,所以
收敛.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0014.jpg?sign=1739295719-qtvfEojt1kK9ELIqc5p5dmObJP7R0zeu-0-a2939ddeddd36a735f878997ad328d50)
因为0<an<1+lnn,所以且
.故
.于是
.