![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第四届全国大学生数学竞赛预赛(2012年非数学类)
试题
一、解答下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
1.求极限.
2.求通过直线L:的两个相互垂直的平面π1和π2,使其中一个平面过点(4,-3,1).
3.已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0004.jpg?sign=1739295670-3ksvir9186b3cqLN1OybBBEJyxB9iMvz-0-c1e4c52ca5c5fc67c287e1a5bf1741f4)
4.设函数u=u(x)连续可微,u(2)=1,且在右半平面与路径无关,求u(x).
5.求极限.
二、(10分)计算.
三、(10分)求方程的近似解,精确到0.001.
四、(12分)设函数y=f(x)的二阶导数连续,且f″(x)>0,f(0)=0,f′(0)=0,求,其中u是曲线y=f(x)在点P(x,f(x))处的切线在x轴上的截距.
五、(12分)求最小的实数C,使得满足的连续的函数f(x)都有
.
六、(12分)设F(x)为连续函数,t>0.区域Ω是由抛物线z=x2+y2和球面x2+y2+z2=t2(t>0)所围起来的部分.定义三重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0012.jpg?sign=1739295670-b78pRHISuQbiUrDzz9wC1INaSVfaM59B-0-320593a0f998f305cd09e6827c0bbc20)
求F(t)的导数F′(t).
七、(14分)设与
为正项级数.
(1)若,则
收敛;
(2)若,且
发散,则
发散.
参考答案
一、1.解 因为,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0005.jpg?sign=1739295670-emK7TYaYZ6UsqkYmHLZsZJAKNFYDPcS9-0-9425dd5c22927974d80f808d950f14fa)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0006.jpg?sign=1739295670-YrBBXM9GigqMgvKW6PFZ1psLoFE7Va45-0-d782e375cbe22f4b1a5b2e2fe2df99b4)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0007.jpg?sign=1739295670-6GWQDAtdhNNjd43TFQtX0OG5ljT2Erij-0-5d0ac5a3d1b719de08aa97f4d3c53a2c)
2.解 过直线L的平面束为
λ(2x+y-3z+2)+μ(5x+5y-4z+3)=0,
即
(2λ+5μ)x+(λ+5μ)y-(3λ+4μ)z+(2λ+3μ)=0,
若平面π1过点(4,-3,1),代入得λ+μ=0,即μ=-λ,从而π1的方程为
3x+4y-z+1=0,
若平面束中的平面π2与π1垂直,则
3(2λ+5μ)+4(λ+5μ)+1(3λ+4μ)=0.
解得λ=-3μ,从而平面π2的方程为x-2y-5z+3=0.
3.解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0008.jpg?sign=1739295670-GTTl9op7OdvJ7ac4vInG8mKP8l07icaI-0-92505f6aac24843c62b058c6f6676123)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0009.jpg?sign=1739295670-Z4YL96Z9F2RIaDD8XD2OYcQ9qbMuJt93-0-7ccaf255778f4630aed410305b6a96ea)
若使,只有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0011.jpg?sign=1739295670-l1fo1midtHYP4M5wC4BKK9XMkyysmnus-0-45def24a08f84dca0546c09f3c264f1d)
即a=b=1.
4.解 由得(x+4u3)u′=u,即
,方程通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0014.jpg?sign=1739295670-Odi2YwLXq6n9NkXgpDCLBrkr03MlHlxj-0-c19736b72b0431b38a0fd586f348e44d)
由u(2)=1得C=0,故.
5.解 因为当x>1时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0016.jpg?sign=1739295670-wnLraduK4tzoRIcwaGhsztKsZ7YnD3aS-0-f152679acedcf4355b639ef5fe2475e7)
所以.
二、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739295670-zjwbL15fqLG4NyLPXEgaXRAhBp6MPfug-0-ecae0e50db769b103960a7e8b20e7ce7)
应用分部积分法
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1739295670-MC3VaWBfHlp4IPAjrpXuyvnMWqeAaTAc-0-662d7598dda1ff3d363b73e2c45adc57)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1739295670-hIYqlz1bTE1TscSgCeph0QFqSCsnJhK5-0-52db047ce833c35e8c651f237e739c16)
当nπ≤x<(n+1)π时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1739295670-4twAUpUWOrKFMJLXhuMaO5U2Ob2fm1Qp-0-f954d8d3e443ea6c59255e7ae5bb5921)
令n→∞,由夹逼准则,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0005.jpg?sign=1739295670-10ktpDqQ1tvno5436oO32Oxdjnhg5WcY-0-cf087158da85887e96c34bce6d95075a)
注 如果最后不用夹逼准则,而用
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0006.jpg?sign=1739295670-cutFSq7I9smpwO8Md42DlBY4xJargDDV-0-ce84cb5d24c261a5098dbf1ec8263b30)
需先说明收敛.
三、解 由泰勒公式有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0008.jpg?sign=1739295670-buq0ixijrCMGq2MBmnNISx5DjaQZpJDL-0-501c0a4ede127740920cd04226a59ce7)
令得
,代入原方程得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0011.jpg?sign=1739295670-qAsn7sx9udeqECK8NZj5GBomOgQWqrg6-0-1a2ab1bdd54a268a4437b2e863613b04)
由此知x>500,,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0013.jpg?sign=1739295670-0MuwRQd92Russb903NheRwnFs7TlkS4N-0-d3c4048f7c1d8c039ed6161b3ed6a4bf)
所以,x=501即为满足题设条件的解.
四、解 曲线y=f(x)在点p(x,f(x))处的切线方程为
Y-f(x)=f′(x)(X-x),
令Y=0,则有,由此
,且有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0016.jpg?sign=1739295670-4ZbHj2xhYksSilAtGl293lcGyjBi8cmT-0-515d340c2a86c7ccfbbfe57c4586949a)
由f(x)在x=0处的二阶泰勒公式
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0017.jpg?sign=1739295670-VFLzhpvDw7KxABU0XWJswUEVw8k0YC8q-0-3193158671a963589928ad7a1f9b02c5)
得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0018.jpg?sign=1739295670-uFlQetSTV4LdaT6llwSJKyzAg14cHvwK-0-f14b03db2b2c8adc03e982e67e7c6c3b)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739295670-kI85F74yw06IxQAT5vP3Zdxa1aWAFVmu-0-7f68ed664eb562d98eb1a57757ba9340)
五、解 由于.
另一方面,取fn(x)=(n+1)xn,则,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1739295670-m7M8lGZSRA9RzHhqB9dMhIfN7o60RAY6-0-7f9281cacda609fdc0975fee359d9747)
因此最小的实数C=2.
六、解法1 记,则Ω在xy面上的投影为x2+y2≤g.
在曲线上任取一点(x,y,z),则原点到该点的射线和z轴的夹角为
.取Δt>0,则θt>θt+Δt.对于固定的t>0,考虑积分差F(t+Δt)-F(t),这是一个在厚度为Δt的球壳上的积分.原点到球壳边缘上的点的射线和z轴夹角在θt+Δt和θt之间.我们使用球坐标变换来做这个积分,由积分的连续性可知,存在α=α(Δt),θt+Δt≤α≤θt,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0009.jpg?sign=1739295670-w2JA4tQIT54VkQEER8naJTmKdTjsWCR6-0-47289083bd58eb72ff34dfa880d1cc96)
这样就有.而当Δt→0+时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0011.jpg?sign=1739295670-IR5dXY4cyHVc0j300BlyIpAXIrWfxbS9-0-fbdca6e1158f9c812f899c00b57771dd)
故F(t)的右导数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0012.jpg?sign=1739295670-rnrDnF1k29DlhV32QnxuK9P1IaL15xQ0-0-0ba7eda23d8eb983f80e744e958b13b4)
当Δt<0时,考虑F(t)-F(t+Δt)可以得到同样的左导数.因此
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0013.jpg?sign=1739295670-XxsJxBkg98hBvhd0zKHAphmNfWTomuS0-0-dc584448eb813d08129035def72e62f9)
解法2 令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0014.jpg?sign=1739295670-Grqd2beicTYloBhhPEKpaxi8Fms3P6sG-0-cb6121abe59169fcbb157bd89f923a2d)
其中a满足a2+a4=t2,即.故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0016.jpg?sign=1739295670-Azq6SqhH568kRkeHUJvfWPZxY2rksxzo-0-3c2f84d0b2d788f7f8b11c4864275f55)
从而有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0017.jpg?sign=1739295670-VK76XUL9frjBcpmwpHtHJCnm1aVbPbGm-0-978d941abfd86f2ddb2e3b06a800265c)
注意到,第一个积分为0,我们得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0019.jpg?sign=1739295670-6tmKLD6jD9IIXlPfN5i7bR39BEMpCUtd-0-c721373b866251f39269499348093dea)
所以.
七、证 (1)设,则存在N∈N,对于任意的n≥N,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739295670-8RiWIrRzmhfu28DxWyT2HVrgUxiGhCtz-0-56139db544f922455f450c729a84ec0a)
因而的部分和有上界,从而
收敛.
(2)若,则存在N∈N,对于任意的n≥N,有
,于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0007.jpg?sign=1739295670-Q1sgaJuc9WrAIy7dhDU2eCnPTK6X0cL4-0-7849561bc234d4e577a80fc1542d8b8a)
于是由发散,得到
发散.