参考文献
[1] Cisco annual Internet report (2018–2023) white paper[R].2020.
[2] Bandwidth needs in core and aggregation nodes in the optical transport network[S].2020.
[3] CHEN X, CHANDRASEKHAR S, RANDEL S, et al.All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190 GBaud[J].Journal of Lightwave Technology, 2017, 35(3)∶411-417.
[4] VERBIST J, VERPLAETSE M, SRIVINASAN S A, et al.First real-time 100-Gbit/s NRZ-OOK transmission over 2km with a silicon photonic electro-absorption modulator[C]//Proceedings of 2017 Optical Fiber Communications Conference and Exhibition(OFC).Piscataway∶ IEEE Press, 2017∶ 1-3.
[5] WOLF S, ZWICKEL H, HARTMANN W, et al.Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 Gbit/s on-off keying[J].Scientific Reports, 2018(8)∶ 2598.
[6] HÖESSBACHER C, JOSTEN A, BÄEUERLE B, et al.Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ[J].Optics Express, 2017, 25(3)∶ 1762-1768.
[7] LANGE S, WOLF S, LUTZ J, et al.100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator[J].Journal of Lightwave Technology, 2018, 36(1)∶ 97-102.
[8] OGISO Y, WAKITA H, NAGATANI M, et al.Ultra-high bandwidth InP IQ modulator co-assembled with driver IC for beyond 100GBd CDM[C]//Proceedings of 2018 Optical Fiber Communications Conference and Exposition(OFC).Piscataway∶ IEEE Press, 2018∶ 1-3.
[9] MARDOYAN H, JORGE F, OZOLINS O, et al.204GBaud on-off keying transmitter for inter-data center communications[C]//Proceedings of Optical Fiber Communication Conference Postdeadline Papers.Washington, D.C.∶ OSA, 2018∶ Th4A.4.
[10] ZHANG L, HONG X Z, PANG X D, et al.Nonlinearity-aware 200 Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser[J].Optics Letters, 2018, 43(2)∶ 182-185.
[11] YAMAZAKI H, NAGATANI M, HAMAOKA F, et al.Discrete multitone transmission at net data rate of 250Gbit/susing digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image[J].Journal of Lightwave Technology, 2017, 35(7)∶ 1300-1306.
[12] YAMAZAKI H, NAGATANI M, WAKITA H, et al.IMDD transmission at net data rate of 333 Gbit/s using over-100GHz-bandwidth analog multiplexer and Mach-Zehnder modulator[J].Journal of Lightwave Technology, 2019, 37(8)∶ 1772-1778.
[13] HU Q, CHAGNON M, SCHUH K, et al.IM/DD beyond bandwidth limitation for data center optical interconnects[J].Journal of Lightwave Technology, 2019, 37(19)∶ 4940-4946.
[14] ERIKSSON T A, CHAGNON M, BUCHALI F, et al.56 Gbaud probabilistically shaped PAM8 for data center interconnects[C]//Proceedings of 2017 European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2017∶ 1-3.
[15] YAMAZAKI H, NAKAMURA M, KOBAYASHI T, et al.Net-400-Gbit/s PS-PAM transmission using integrated AMUX-MZM[J].Optics Express, 2019, 27(18)∶ 25544.
[16] HOANG T M, SOWAILEM M Y S, ZHUGE Q, et al.Single wavelength 480 Gbit/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver[J].Optics Express, 2017, 25(26)∶ 33534.
[17] CHAGNON M, PLANT D V.504 and 462 Gbit/s direct detect transceiver for single carrier short-reach data center applications[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2017∶ 1-3.
[18] HOANG T, SOWAILEM M, OSMAN M, et al.280-Gbit/s 320-km transmission of polarization-division multiplexed QAM-PAM with stokes vector receiver[C]//Proceedings of Optical Fiber Communication Conference and Exhibition (OFC).Washington, D.C.∶ OSA, 2017∶ 1-3.
[19] REZA A G, RHEE J K K.Nonlinear equalizer based on neural networks for PAM-4 signal transmission using DML[J].IEEE Photonics Technology Letters, 2018, 30(15)∶ 1416-1419.
[20] MASUDA A, YAMAMOTO S, TANIGUCHI H, et al.255- Gbit/s PAM-8 transmission under 20-GHz bandwidth limitation using NL-MLSE based on Volterra filter[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition(OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[21] VARUGHESE S, GARON D A, MELGAR A, et al.Accelerating TDECQ assessments using convolutional neural networks[C]//Proceedings of 2020 Optical Fiber Communications Conference and Exhibition(OFC).Piscataway∶ IEEE Press, 2020∶ 1-3.
[22] PRODANIUC C, STOJANOVIC N, XIE C S, et al.3-Dimensional PAM-8 modulation for 200 Gbit/s/lambda optical systems[J].Optics Communications, 2019, 435∶ 1-4.
[23] STOJANOVIC N, PRODANIUC C, ZHANG L, et al.210/225 Gbit/s PAM-6 transmission with BER below KP4-FEC/EFEC and at least 14 dB link budget[C]//Proceedings of 2018 European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2018∶ 1-3.
[24] ZHANG L, WEI J L, STOJANOVIC N, et al.Beyond 200-Gbit/s DMT transmission over 2-km SMF based on a low-cost architecture with single-wavelength, single-DAC/ADC and single-PD[C]//Proceedings of 2018 European Conference on Optical Communication (ECOC).Piscataway∶IEEE Press, 2018∶ 1-3.
[25] ZHANG F, ZHU Y X, YANG F, et al.Up to single lane 200G optical interconnects with silicon photonic modulator[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[26] ZHU Y X, ZHANG F, YANG F, et al.Toward single lane 200G optical interconnects with silicon photonic modulator[J].Journal of Lightwave Technology, 2020, 38(1)∶ 67-74.
[27] ZHU Y X, ZOU K H, CHEN Z Y, et al.224 Gbit/s optical carrier-assisted Nyquist 16-QAM half-cycle single-sideband direct detection transmission over 160 km SSMF[J].Journal of Lightwave Technology, 2017, 35(9)∶ 1557-1565.
[28] ZHU Y X, ZOU K H, ZHANG F.C-band 112 Gbit/s Nyquist single sideband direct detection transmission over 960 km SSMF[J].IEEE Photonics Technology Letters, 2017, 29(8)∶ 651-654.
[29] ZOU K H, ZHU Y X, ZHANG F, et al.Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection[J].Optics Letters, 2016, 41(12)∶ 2767-2770.
[30] ZHOU S W, LI X, YI L L, et al.Transmission of 2 × 56 Gbit/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs[J].Optics Letters, 2016, 41(8)∶ 1805-1808.
[31] GAO F, ZHOU S W, LI X, et al.2 × 64Gbit/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs)[J].Optics Express, 2017, 25(7)∶ 7230-7237.
[32] LI D, DENG L, YE Y, et al.4 × 96 Gbit/s PAM8 for short-reach applications employing low-cost DML without pre-equalization[C]//Proceedings of Optical Fiber Communication Conference (OFC) 2019.Washington, D.C.∶ OSA, 2019∶ 1-3.
[33] LI D, DENG L, YE Y, et al.Amplifier-free 4 × 96 Gbit/s PAM8 transmission enabled by modified Volterra equalizer for short-reach applications using directly modulated lasers[J].Optics Express, 2019, 27(13)∶17927-17939.
[34] WAN Z Q, LI J Q, SHU L, et al.Nonlinear equalization based on pruned artificial neural networks for 112-Gbit/s SSB-PAM4 transmission over 80-km SSMF[J].Optics Express, 2018, 26(8)∶ 10631-10642.
[35] SHU L, LI J Q, WAN Z Q, et al.Single-photodiode 112-Gbit/s 16-QAM transmission over 960-km SSMF enabled by Kramers-Kronig detection and sparse I/Q Volterra filter[J].Optics Express, 2018, 26(19)∶24564-24576.
[36] FU Y, KONG D M, BI M H, et al.Computationally efficient 104 Gbit/s PWL-Volterra equalized 2D-TCM-PAM8 in dispersion unmanaged DML-DD system[J].Optics Express, 2020, 28(5)∶ 7070-7079.
[37] FU Y, KONG D M, XIN H Y, et al.Piecewise linear equalizer for DML based PAM-4 signal transmission over a dispersion uncompensated link[J].Journal of Lightwave Technology, 2020, 38(3)∶ 654-660.
[38] AN S H, ZHU Q M, LI J C, et al.112-Gbit/s SSB 16-QAM signal transmission over 120-km SMF with direct detection using a MIMO-ANN nonlinear equalizer[J].Optics Express, 2019, 27(9)∶ 12794-12805.
[39] ZOU D D, LI F, LI Z B, et al.100G PAM-6 and PAM-8 signal transmission enabled by pre-chirping for 10-km intra-DCI utilizing MZM in C-band[J].Journal of Lightwave Technology, 2020, 38(13)∶ 3445-3453.
[40] LI F, ZOU D D, SUI Q, et al.Optical amplifier-free 100 Gbit/s/Lamda PAM transmission and reception in O-band over 40km SMF with 10-G class DML[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[41] LI Z B, WANG W, ZOU D D, et al.DFT spread spectrally efficient frequency division multiplexing for IM-DD transmission in C-band[J].Journal of Lightwave Technology, 2020, 38(13)∶ 3526-3532.
[42] YU J J, ZHANG J W, CHIEN H C, et al.56 Gbit/s chirp-managed symbol transmission with low-cost, 10-G class LD for 400G intra-data center interconnection[C]//Proceedings of Optical Fiber Communication Conference.Washington,D.C.∶OSA, 2017∶ W4D.2.
[43] ZHANG J W, YU J J, CHIEN H C.EML-based IM/DD 400G (4 × 112.5-Gbit/s) PAM-4 over 80 km SSMF based on linear pre-equalization and nonlinear LUT pre-distortion for inter-DCI applications[C]//Proceedings of 2017 Optical Fiber Communications Conference and Exhibition (OFC).Piscataway∶ IEEE Press, 2017∶1-3.
[44] SHI J Y, ZHOU Y J, XU Y M, et al.200-Gbit/s DFT-S OFDM using DD-MZM-based twin-SSB with a MIMO-Volterra equalizer[J].IEEE Photonics Technology Letters, 2017, 29(14)∶ 1183-1186.
[45] ZHANG J W, YU J J, SHI J Y, et al.Digital dispersion pre-compensation and nonlinearity impairments preand post-processing for C-band 400G PAM-4 transmission over SSMF based on direct-detection[C]// Proceedings of 2017 European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2017∶1-3.
[46] SHI J Y, ZHANG J W, ZHOU Y J, et al.Transmission performance comparison for 100-Gbit/s PAM-4, CAP-16, and DFT-S OFDM with direct detection[J].Journal of Lightwave Technology, 2017, 35(23)∶5127-5133.
[47] SHI J Y, ZHANG J W, CHI N, et al.Comparison of 100G PAM-8, CAP-64 and DFT-S OFDM with a bandwidth-limited direct-detection receiver[J].Optics Express, 2017, 25(26)∶ 32254.
[48] ZHANG J W, SHI J Y, YU J J.The best modulation format for 100G short-reach and metro networks∶ DMT, PAM-4, CAP, or duobinary?[C]//SPIE OPTO.Proc SPIE 10560, Metro and Data Center Optical Networks and Short-Reach Links,SanFrancisco,California, USA.2018, 10560∶ 1056002.
[49] SHI J Y, ZHANG J W, CHI N, et al.Probabilistically shaped 1024-QAM OFDM transmission in an IM-DD system[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2018∶ W2A.44.
[50] SHI J Y, ZHANG J W, LI X Y, et al.112 Gbit/(s·λ) CAP signals transmission over 480 km in IM-DD system[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2018∶ 1-3.
[51] SHI J Y, ZHOU Y J, ZHANG J W, et al.Enhanced performance utilizing joint processing algorithm for CAP signals[J].Journal of Lightwave Technology, 2018, 36(16)∶ 3169-3175.
[52] ZHANG J, YU J J, ZHAO L, et al.Demonstration of 260-Gbit/s single-lane EML-based PS-PAM-8 IM/DD for datacenter interconnects[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[53] ZHOU Y J, YU J J, WEI Y R, et al.160 Gbit/s 256QAM transmission in a 25 GHz grid using Kramers-Kronig detection[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition(OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[54] ZHOU Y J, YU J J, WEI Y R, et al.Four-channel WDM 640 Gbit/s 256 QAM transmission utilizing Kramers-Kronig receiver[J].Journal of Lightwave Technology, 2019, 37(21)∶ 5466-5473.
[55] WANG K H, ZHANG J, ZHAO M M, et al.High-speed PS-PAM8 transmission in a four-lane IM/DD system using SOA at O-band for 800G DCI[J].IEEE Photonics Technology Letters, 2020, 32(6)∶ 293-296.
[56] VAN VEEN D, HOUTSMA V, GNAUCK A, et al.40-Gbit/s TDM-PON over 42 km with 64-way power split using a binary direct detection receiver[C]//Proceedings of 2014 The European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2014∶ 1-3
[57] HOUTSMA V, VAN VEEN D, GNAUCK A, et al.APD-based duobinary direct detection receivers for 40 Gbit/s TDM-PON[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2015∶ Th4H.1.
[58] VAN VEEN D T, HOUTSMA V E.Symmetrical 25-Gbit/s TDM-PON with 31.5-dB optical power budget using only off-the-shelf 10-Gbit/s optical components[J].Journal of Lightwave Technology, 2016, 34(7)∶1636-1642.
[59] HOUTSMA V, VAN VEEN D.Demonstration of symmetrical 25 Gbit/s TDM-PON with 31.5 dB optical power budget using only 10 Gbit/s optical components[C]//Proceedings of 2015 European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2015∶ 1-3.
[60] QIN C, HOUTSMA V, VAN VEEN D, et al.40 Gbit/s PON with 23 dB power budget using 10 Gbit/s optics and DMT[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2017∶ M3H.5.
[61] WEI J L, GIACOUMIDIS E.Multi-band CAP for next-generation optical access networks using 10-G optics[J].Journal of Lightwave Technology, 2018, 36(2)∶ 551-559.
[62] WEI J L.DSP-based multi-band schemes for high speed next generation optical access networks[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2017∶ M3H.3.
[63] WEI J L, EISELT N, GRIESSER H, et al.Demonstration of the first real-time end-to-end 40-Gbit/s PAM-4 for next-generation access applications using 10-Gbit/s transmitter[J].Journal of Lightwave Technology, 2016, 34(7)∶ 1628-1635.
[64] WEI J L, EISELT N, GRIESSER H, et al.First demonstration of real-time end-to-end 40 Gbit/s PAM-4 system using 10-G transmitter for next generation access applications[C]//Proceedings of 2015 European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2015∶ 1-3.
[65] HOUTSMA V, CHOU E, VAN VEEN D.92 and 50 Gbit/s TDM-PON using neural network enabled receiver equalization specialized for PON[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[66] VAN V D, HOUTSMA V.Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent amplification[C]//Proceedings of Optical Fiber Communication Conference PostdeadlinePapers.Washington, D.C.∶ OSA, 2017∶ Th5A.4.
[67] HOUTSMA V, VAN VEEN D.Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent detection[J].Journal of Lightwave Technology, 2018, 36(1)∶ 122-127.
[68] SUZUKI N, YOSHIMA S, MIURA H, et al.Demonstration of 100-Gbit/(s·λ)-based coherent WDM-PON system using new AGC EDFA based upstream preamplifier and optically superimposed AMCC function[J].Journal of Lightwave Technology, 2017, 35(8)∶ 1415-1421.
[69] SUZUKI N, MIURA H, UTO K.Demonstration of 100 Gbit/(s·λ)-based coherent PON system using new automatic gain controlled EDFA with ASE compensation function for upstream[C]//Proceedings of ECOC 2016; 42nd European Conference on Optical Communication.VDE2016∶ 1-3.
[70] ADIB M M H, KEMAL J N, FÜLLNER C, et al.Colorless coherent passive optical network using a frequency comb local oscillator[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition (OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[71] KIM D, KIM B G, BO T W, et al.80-km reach 28-Gbit/(s·λ) RSOA-based coherent WDM PON using dither-frequency-tuning SBS suppression technique[C]//Proceedings of Optical Fiber Communication Conference (OFC)2019.Washington, D.C.∶ OSA, 2019∶ Th3F.6.
[72] ARTIGLIA M, PRESI M, BOTTONI F, et al.Polarization-independent coherent real-time analog receiver for PON access systems[J].Journal of Lightwave Technology, 2016, 34(8)∶ 2027-2033.
[73] XUE L, YI L L, LI P X, et al.50-Gbit/s TDM-PON based on 10G-class devices by optics-simplified DSP[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2018∶ M2B.4.
[74] XUE L, YI L L, HU W S, et al.Optics-simplified DSP for 50 Gbit/s PON downstream transmission using 10Gbit/s optical devices[J].Journal of Lightwave Technology, 2020, 38(3)∶ 583-589.
[75] YI L L, LI P X, LIAO T, et al.100 Gbit/(s·λ) IM-DD PON using 20G-class optical devices by machine learning based equalization[C]//Proceedings of 2018 European Conferenceon Optical Communication (ECOC).Piscataway∶ IEEE Press, 2018∶ 1-3.
[76] YI L L, LIAO T, HUANG L Y, et al.Machine learning for 100 Gbit/(s·λ) passive optical network[J].Journal of Lightwave Technology, 2019, 37(6)∶ 1621-1630.
[77] ZHANG K, ZHUGE Q, XIN H Y, et al.Demonstration of 50Gbit/(s·λ) symmetric PAM4 TDM-PON with 10G-class optics and DSP-free ONUs in the O-band[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2018∶ 1-3.
[78] ZHANG K, ZHUGE Q, XIN H Y, et al.Design and analysis of high-speed optical access networks in the O-band with DSP-free ONUs and low-bandwidth optics[J].Optics Express, 2018, 26(21)∶ 27873.
[79] LI J, ZENG T, MENG L H, et al.Real-time bidirectional coherent ultra-dense TWDM-PON for 1000 ONUs[J].Optics Express, 2018, 26(18)∶ 22976-22984.
[80] TANG X Z, QIAO Y J, ZHOU J, et al.Equalization scheme of C-band PAM4 signal for optical amplified 50-Gbit/s PON[J].Optics Express, 2018, 26(25)∶ 33418-33427.
[81] LI C C, CHEN J, LI Z X, et al.Demonstration of symmetrical 50-Gbit/s TDM-PON in O-band supporting over 33-dB link budget with OLT-side amplification[J].Optics Express, 2019, 27(13)∶ 18343-18350.
[82] TAO M H, ZHOU L, ZENG H Y, et al.50-Gbit/(s·λ) TDM-PON based on 10GDML and 10GAPD supporting PR10 link loss budget after 20-km downstream transmission in the O-band[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2017∶ Tu3G.2.
[83] TAO M H, ZHENG J Y, DONG X L, et al.Improved dispersion tolerance for 50G-PON downstream transmission via receiver-side equalization[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition(OFC).Piscataway∶ IEEE Press, 2019∶ 1-3.
[84] ZHANG J W, YU J J, SHI J Y, et al.64-Gbit/s/λ downstream transmission for PAM-4 TDM-PON with centralized DSP and 10G low-complexity receiver in C-band[C]//Proceedings of 2017 European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2017∶ 1-3.
[85] ZHANG J W, WEY J S, YU J J, et al.Symmetrical 50-Gbit/(s·λ) PAM-4 TDM-PON in O-band with DSP and semiconductor optical amplifier supporting PR-30 link loss budget[C]//Proceedings of Optical Fiber Communication Conference.Washington, D.C.∶ OSA, 2018∶ M1B.4.
[86] ZHANG J W, XIAO X, YU J J, et al.Real-time FPGA demonstration of PAM-4 burst-mode all-digital clock and data recovery for single wavelength 50G PON application[C]//Proceedings of 2018 Optical Fiber Communications Conference and Exposition (OFC).Piscataway∶ IEEE Press, 2018∶ 1-3.
[87] ZHANG J W, WEY J S, SHI J Y, et al.Experimental demonstration of unequally spaced PAM-4 signal to improve receiver sensitivity for 50-Gbit/s PON with power-dependent noise distribution[C]//Proceedings of 2018 Optical Fiber Communications Conference and Exposition (OFC).Piscataway∶ IEEE Press, 2018∶ 1-3.
[88] ZHANG J W, WEY J S, SHI J Y, et al.Single-wavelength 100-Gbit/s PAM-4 TDM-PON achieving over 32-dB power budget using simplified and phase insensitive coherent detection[C]//Proceedings of 2018 European Conference on Optical Communication (ECOC).Piscataway∶ IEEE Press, 2018∶ 1-3.
[89] ZHANG J, YU J J, CHIEN H, et al.Demonstration of 100-Gbit/(s·λ) PAM-4 TDM-PON supporting 29-dB power budget with 50-km reach using 10G-class O-band DML transmitters[C]//Proceedings of Optical Fiber Communication Conference Postdeadline Papers 2019.Washington, D.C.∶ OSA, 2019∶ Th4C.3.
[90] ZHANG J, YU J J, WEY J S, et al.SOA pre-amplified 100 Gbit/(s·λ) PAM-4 TDM-PON downstream transmission using 10 Gbit/s O-band transmitters[J].Journal of Lightwave Technology, 2020, 38(2)∶ 185-193.
[91] ZHANG J, YU J J, WANG K H, et al.200-Gbit/(s·λ) PDM-PAM-4 PON with 29-dB power budget based on heterodyne coherent detection[C]//Proceedings of Optical Fiber Communication Conference (OFC) 2019.Washington, D.C.∶ OSA, 2019∶ Th3F.1.
[92] ZHANG J, YU J J, LI X Y, et al.200 Gbit/(s·λ) PDM-PAM-4 PON system based on intensity modulation and coherent detection[J].Journal of Optical Communications and Networking, 2019, 12(1)∶ A1.