![系统建模与控制导论](https://wfqqreader-1252317822.image.myqcloud.com/cover/696/50417696/b_50417696.jpg)
2.2 部分分式展开
在用拉普拉斯变换解微分方程时,最后一步通常是求有理函数s的拉普拉斯逆变换[2],在之前的例子中,我们用了这样一个公式:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_02.jpg?sign=1739294811-SeYsn6XTjMMi9R60fIdwajKrx2UYHrLK-0-14538d8fbbd77b14162ad7674664fce4)
即有理函数被分解为两个已知逆变换的更简单的函数。这个分解过程被称为部分分式展开。我们将通过一系列例子说明如何做到这一点。
例10
将其改写为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_05.jpg?sign=1739294811-vZ3dzyDJGvaUH3infpeLnyMC47gXInvD-0-ecca14a1d7eee2c693bc3463f82826e3)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_06.jpg?sign=1739294811-Ph7kBk0sDLNULTgnAGP6GFme0y0zHOK2-0-9d08a252a10aab830180c809b120b6b2)
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_07.jpg?sign=1739294811-UtjdQM2E6mfz7sPHxVHF9IWFIQxWSEWy-0-e87a8f8d07400d7240c6c4b1c88b914e)
这样
A=1
类似地,
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_08.jpg?sign=1739294811-gDLVMYimaC7MJJ5sekhmav45rwJerfIH-0-f1795d762e1a23d3bdfc2970c045a7da)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/55_09.jpg?sign=1739294811-aw33ey7SDcwLny7qkYynH6rMNlfZTVsr-0-7e05b9a9b8f143cb021df1889d0f6323)
或者说
B=-1
于是我们有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_01.jpg?sign=1739294811-B1Ks7HndDcmsTnC3c9MzsNUtGdiVWzt1-0-de07102150e6b16b126c5916e9ef871e)
通过拉普拉斯变换可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_02.jpg?sign=1739294811-ZCJS7aQ8xmBXokt8Fv0Oa2KAR8tr6s4D-0-e1a7cbddfe67bb13c05f62f21d441e57)
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_03.jpg?sign=1739294811-m292RiNpHQv6E8ydRbaACD7UdWWCnL4O-0-67297d7190bc08f8cc4355d5939e251e)
例11
我们要求它的拉普拉斯逆变换
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_05.jpg?sign=1739294811-IWd2pd6VRLtDKFfrhfvkjTTuf1LFe19z-0-4bf46383b4b70065bada6fdcda1beaab)
首先,公式
s2+2s+5=0
的根为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_06.jpg?sign=1739294811-BGll0EHatshu0GuY3rm95bTzcNjfQyUI-0-3ab36e259e4d87783648131cb51cf018)
我们称F(s)的分母的根为F(s)的极点,可以把它写作
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_07.jpg?sign=1739294811-dbIZYTQNwoz6VS5x0oX5pWXBIUyAUBs0-0-fc810d5bf118b7fecb99787aba166a7c)
从拉普拉斯变换表可知
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_08.jpg?sign=1739294811-NZD63i1t9vnQlEEGg54ZOW8e6XWjv5z6-0-722e4f7b41f9040e5ad33d5aba9b984e)
确定σ=-1,ω=2,那么F(s)可以重新写为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/56_09.jpg?sign=1739294811-e3en1NfVr0KomdFb8dPJuPeuW1YPTJ4W-0-330a15411122cdb7fa5b0c1565b0f5f3)
用已有的拉普拉斯变换表可得
f(t)=2e-tcos(2t)us(t)+5e-tsin(2t)us(t)
我们可以用MATLAB来验证这个结果:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/57_01.jpg?sign=1739294811-7xlideKzRlHo6orRqB7RMealT2SA802t-0-9eaa29c1124655ed171985e4a95312fc)
MATLAB的返回值应为
exp(-t)(2cos(2t)+5sin(2t))
我们需要处理复数,所以现在简单回顾一下复数运算。
题外话 复数回顾
令
c=a+jb
表示一个复数,其中a和b是实数,。c的共轭复数用c*表示,定义为
c*≜a-jb
注意
(c*)*=(a-jb)*=a+jb=c
c的大小定义为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/57_03.jpg?sign=1739294811-V3twfY1a8B1FZW06901GeWPJOmQCmU9G-0-84a6cc3e3f46f0beec4028d177f3cdfe)
它也等于c*的大小,即
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/57_04.jpg?sign=1739294811-YfL2CIp3if4pp3Qpvpbpzsy0B6g5sLhJ-0-05c5b052ccf6ff9ad3d23a67ed70f50d)
我们也可以用极坐标的形式表示复数。定义
∠c≜tan-1(b,a)
如图2-1所示,tan-1(b,a)在大多数计算机语言中表示为atan2(b,a),这样便于使c=a+bj的角度在正确的象限内。例如,令c1=-1+j,那么
∠c1=tan-1(1,-1)=atan 2(1,-1)=3π/4=2.3562
相反,如果我们考虑c2=1-j,那么
∠c2=tan-1(-1,1)=atan2(-1,1)=-π/4=-0.7854
我们可以把c写成极坐标形式,即
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/57_05.jpg?sign=1739294811-EsJsYolZd8EfU2dl2jOJVhQWloD2BLP3-0-a96c90b638b3023bab6a894c2dd64b37)
图2-1 c=a+jb=|c|ej∠c,c*=a-jb=|c|e-j∠c
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/57_06.jpg?sign=1739294811-qAPafWQYRweC1fIUWmIRWmI98OXnJFNU-0-1fed2a48fef9ce67a0bddea6c5614b57)
于是我们得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/57_07.jpg?sign=1739294811-Y1S0eeNnBX0HCTpnYBacZc85iWq5vfU3-0-e05bd7a187c0d0d67260cfcaeef4de5c)
也就是
|c*|=|c|
∠c*=-∠c
下面我们证明:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/58_02.jpg?sign=1739294811-dehJQHXzEDi0AsOUx6MWLP6sOajBy9VD-0-cc71b6893362acf7bb265a47cd41a50b)
类似地,
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/58_03.jpg?sign=1739294811-JiadHjHZjZeEJO3QgqHDKaKrkV3YGUH1-0-b7254da09116331b294f8dec7c917a36)
例12 (续)
我们用F(s)的复共轭极点对部分分式展开重做之前的例子。
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/58_05.jpg?sign=1739294811-M2n1BFQtX1rYoq5ozAPCJ6rOJ4ZMiKYx-0-2353af2731e82ace82def67b9a316a77)
那么
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/58_06.jpg?sign=1739294811-y4xLPQJxRGHAxPI7rfnzWqzCRlhJFALV-0-439566419f42ba7a1a48c16b98a6b285)
并且
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/58_07.jpg?sign=1739294811-VtdaiJ2KTge6j40eDp0LL5C4uhcKisGt-0-922cfe421de70781e195b3162144c2e8)
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/58_08.jpg?sign=1739294811-WvqR12ZUDtTxlSFlgIugKnDWJBheCFb6-0-48c47098241c00bfb33ccd0b3a99bb69)
同样,
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/58_09.jpg?sign=1739294811-mtXL0jCAU1RyhXC1tui2tX44mf4utfJG-0-4c73f9ed4ef5214497585de0b416c7a1)
因此β1=1-2.5 j。类似地,
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_01.jpg?sign=1739294811-d0Y7Ux4JVBzbn0y3D9rXqgC5sVJUDLy2-0-20c31132eb0f39109ab7f929cc8aaf35)
这里需要注意的一点是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_02.jpg?sign=1739294811-Ow4uRCNsUoRmrJ09jpLqp8SE5wDTptXS-0-b7ed2a17ce4270971bb5135bbbbc3e07)
永远都是这样。回到部分分式展开,我们已经证明了
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_03.jpg?sign=1739294811-t5GtTMxXLEUn0XflrqXk3Sey356XwCK0-0-f67e0ff46bc2b508ef8e276118ea969d)
结果可以用MATLAB进行检验:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_04.jpg?sign=1739294811-geTskW5wkT2CMyqp47lagyivCOAT0JgW-0-ab5801b40339d9f82b6e95fac5aae7e1)
MATLAB的返回值应为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_05.jpg?sign=1739294811-MYov8aRxvS1MWnHk0w9WXOtwy6itKJrH-0-6005a141a462c95122f294ba0827de8f)
现在我们将β1=1-2.5 j转换为极坐标形式(见图2-2)。
我们有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_06.jpg?sign=1739294811-nDMsjSLZ2bTRmiEs3NyNoLbgezNy7XVI-0-697d1b887fbfdb8140b4633c2831add5)
再次用MATLAB检验我们的答案:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_07.jpg?sign=1739294811-bgmBoG23P3EokcPHlh4IhyRF5uVMBRMB-0-689cf33eea032dd9bb8c203fbcacfda2)
图2-2 将1-2.5j转换为极坐标形式
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_08.jpg?sign=1739294811-8beiq9dR25siEUgnPOHtWWXRe3Akf5fn-0-c07065fcdc21c1e82f054a0b13929408)
MATLAB的返回值应为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/59_09.jpg?sign=1739294811-8hUbbiyrPk1GQQXavKdufcPtdSCoviko-0-62d2efa7082eedcdc48afbed36a0bdfa)
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/60_01.jpg?sign=1739294811-Zqp93bZ275WJAzWtKNmZ6QWMWI0N5JYo-0-22015555d049ddea6642f4ad91e47d02)
把β1,写成极坐标形式:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/60_03.jpg?sign=1739294811-aW2kJsdHqvW2Hzg7EPWm1UCfnHVbXpPc-0-18f9e01496aeb9fe3e2df03d32233277)
在例11中我们得到
f(t)=2e-tcos(2t)us(t)+5e-tsin(2t)us(t)
所以结果应该为
2=2|β1|cos(∠β1)=2×2.6932cos(-1.19)
5=-2|β1|sin(∠β1)=-2×2.6932sin(-1.19)
此式成立(用MATLAB来检查)。
例13 多根问题
令
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/60_04.jpg?sign=1739294811-J86wFIiUmXQ0m3cfErP71kcFTGzDOmtD-0-e224780329eb893762edd64c4d331680)
F(s)的部分分式展开为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/60_05.jpg?sign=1739294811-QKA5o7Q8PgXupebq8z0OKFR7mTCfIIdU-0-9399690bbf07c7fde58ae2e2b0a95772)
首先乘s(s+2)2得到
1=A0(s+2)2+A1s(s+2)+A2s
或
1=(A0+A1)s2+(4A0+2A1+A2)s+4A0
s的系数相等,我们可以得到
A0=1/4,A1=-1/4,A2=-1/2
因此
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/60_06.jpg?sign=1739294811-gCkqjNY64ujtPLqyFhW0B6O9r8Bnofwf-0-553994fa774f9453b31c8dac0f0c5ce6)
最终可得到[3]
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_01.jpg?sign=1739294811-8uGm4mWOHFHkod0n5wa2hmbyy6eOAEia-0-9952105fd359bcdce0ff525eff2480c8)
例14
对于例13的部分分式展开,更简单的方法如下:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_03.jpg?sign=1739294811-Vemih8yZnA5oLYUEjLWIt0bAKXFVVuMw-0-4c34da9bf39bf519ced4df12043f9aea)
通过乘(s+2)2得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_04.jpg?sign=1739294811-oFy7ql9rvNG7B2eWjVv29gmukPd2QqsN-0-cb26123a0a0c94b8984907730e17c31a)
然后设s=-2,可以得到A2=-1/2。于是可以得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_05.jpg?sign=1739294811-UxmT06uZlLmeURYG7M0O0yOt3kFNfwDY-0-acdc59e2b9a5e23dc0cd82cbfa53bf83)
上式可变形为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_06.jpg?sign=1739294811-ieyz0AgK3uEabUKzwMdtg7SYPgYBGdja-0-0111a5838940b60f51f2e4f48b8a3877)
或者
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_07.jpg?sign=1739294811-Bcg2PeFL2Jk8aFPXBhXrNBYl121isW9L-0-f370b552e785c553b8a1c81b815c7d1e)
就像例13的结果一样:A0=1/4,A1=-1/4。
例15
我们可以用二次方程来解,即
s2+s+1=0
解得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_09.jpg?sign=1739294811-u03l2a5zzGyDrJZHLsJUR9EtdVsGcqpI-0-9c1e86b2093a9ba93fce447dd505be08)
于是F(s)可以写成
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/61_10.jpg?sign=1739294811-2NJAFRd2IAqtPrFZ3azJZlTZNd4WnqXc-0-13561f5817f2e61d1b92803a4625ce93)
然后我们可以用式(2.16)对复共轭极点进行展开。然而,还存在另外一种使用式(2.17)的方法。可以写成[4]:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/62_01.jpg?sign=1739294811-ZauIC55prw6Eccsgc2RDOn0twEDVTsXb-0-3e852affdd86ebe8728eaac117458b4b)
通过乘以s(s2+s+1)来消除分式,得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/62_02.jpg?sign=1739294811-fN59D7VOEpR8ReO7YCVK4EOuz3uHKb1v-0-ca8427cfdce8836af05bbe8bbeb0898e)
或写成
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/62_03.jpg?sign=1739294811-9uX4aFsZIPt22aenb2OctmogGS7FuLu9-0-1d4b08f7b111bb5b0ee99695af669c16)
解得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/62_04.jpg?sign=1739294811-DJSTLFTGfVUHvqtpxFyXU0qn60hhbjov-0-0c7bf455fb7082801137209f6ca365a7)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/62_05.jpg?sign=1739294811-YzPviGLKnOrO1xnlm9P4wdoX8VU3EFE5-0-e7ffc11bd510506869dca35b7c459c3b)
例16 (再次)
让我们用“硬核”的方式重做前面式(2.16)的例子。有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/62_07.jpg?sign=1739294811-6Zop1s7OuRrnlCD39H7nZB8s8TJ9wVaT-0-8c1e2b04e74e00abe858f165666c81ed)
于是
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/62_08.jpg?sign=1739294811-WiXmC2bLNU0iKGj1LyZacku8isdnlCvy-0-43741e41ed1cb094f7a64739cabd4cc4)
并且
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/63_01.jpg?sign=1739294811-DymP56glVCEdRV0ltFUit7zkZTEWkVx3-0-7a764a6b0417c181c0b0c18d6179f892)
同时
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/63_02.jpg?sign=1739294811-tbUVwmAQF3oV0WZUQCbWyhjIVnsaUyqy-0-872d8d5998dbc370502bf7cadc073fc6)
为了给出和例15中相同形式的答案,我们必须将β1转换为极坐标形式(见图2-3)。且
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/63_03.jpg?sign=1739294811-iWJ2lS0MHP7rpr7xAHNBlrKALzUhqcCu-0-298f17ef25c262c97d9faf54297c0e31)
此外
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/63_04.jpg?sign=1739294811-HsnHFe0iK0Sj0riFUC71EaxQucLXZCVc-0-647c5ba9657f30f834bbc27343b6d863)
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/63_05.jpg?sign=1739294811-3cNlRV8nsIEsLEhYWPqp4j3WkJzWLwku-0-b7cca1ed1fe98b03cf8624ee6747515c)
图2-3 ∠β1=π/2+π/3
回顾之前我们的定义tan-1(b,a)与计算机语言命令atan2(b,a)相同。最终可得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/63_06.jpg?sign=1739294811-mpnDaKpYYtf2pyp9CzQlTDjjDITKsoGG-0-efe828486940c369e6b2516a836f8971)
结果和式(2.18)中的一样。
2.2.1 非严格正则有理函数
在所有部分分式的例子中我们得到了严格正则有理函数。也就是说,我们有
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/64_01.jpg?sign=1739294811-bA4lAZuwek6NzTvtBPaBLvPJucVZayjd-0-3ffdbaf5a53a5a13e39682e4ed4fcd39)
假设考虑:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/64_02.jpg?sign=1739294811-53PTc4d69PjsPUH80kFr8YrbLodbxZyy-0-dd25ad16d4b4d37d61b5c02f425a8b05)
其中,F(s)是正则有理函数,因为deg{b(s)}≤deg{a(s)},但不是严格正则有理函数,因为deg{b(s)}=deg{a(s)}。为了使部分分式展开法有效,我们必须先将分子除以分母,如下所示:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/64_03.jpg?sign=1739294811-FO1q8mYKrgqOUURk94iF4fCk1DpFfSev-0-9d4b79af45280fd2f462fede0299beb4)
在MATLAB中我们可以编写程序:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/64_04.jpg?sign=1739294811-wIskLmVef2MyEiddQ9e0rI250Czk509p-0-9064e94110676b8830cd433a93723669)
它的返回值应该为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/64_05.jpg?sign=1739294811-92Fm426FOl6gd9TZDF0LsetH1ztu8LP2-0-e776376c30f7c140e610b08600c193af)
例17
另一个例子是令,它不是正则有理函数。我们首先用长除法将s2+5s+4除以s3,可得
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/64_08.jpg?sign=1739294811-1bF6K8GhyCNOgeBKFaDDwWf8jOumbdvF-0-770665f73c8c5f5cf25dcaf2dcf83ea7)
这样
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/65_01.jpg?sign=1739294811-msPe8ZNG8g9fgUFaBQBlW2GyT7I5XbqC-0-051a8453284d57a01a0dbfe085a137f3)
接下来,我们对做部分分式展开,得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/65_03.jpg?sign=1739294811-okQwoj75fw3Yhm8tU3bD0B3awoDjLNNB-0-f575af311754e5cc354fbd54361240ba)
最后得到
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/65_04.jpg?sign=1739294811-5y0XtO9KDJSKfSTw5cNHNzfdTrfZZKYI-0-a2ba52e6498194c9c47abea4f2f7754d)
在MATLAB中我们可以编写程序:
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/65_05.jpg?sign=1739294811-FWwV7MpI1uUbomgp9xTOIrpqKl1ubcqZ-0-766808d04d0f36acfa8342e860c8914e)
它的返回值应该为
![](https://epubservercos.yuewen.com/2A12F5/29686623104653906/epubprivate/OEBPS/Images/65_06.jpg?sign=1739294811-AO4GAsTEUHTVoqYCZc3bANsLqRJwXZb1-0-a26f3b141dc2ef903701fe833f061b5b)
注意 在我们把拉普拉斯变换应用到物理系统中时,F(s)往往是严格正则有理函数。