![孙训方《材料力学》(第5版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/754/27032754/b_27032754.jpg)
第4章 弯曲应力
一、选择题
1.如图4-1所示,轴AB作匀速转动,等截面斜杆固定于轴AB上,沿斜杆轴线弯矩图可能为( )。[中国矿业大学2009研]
A.一次直线
B.二次曲线
C.三次曲线
D.四次曲线
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image105.jpg?sign=1739280307-zmwQglq71YN8BUYNCMclILf1J1ETQZqU-0-548bc586558287ab81c0cc5338a8f428)
图4-1
【答案】C
【解析】设斜杆以角速度ω匀速转动,斜杆的长度为l,横截面面积为A,容重为γ,于是可得距离固定端x的截面处离心力的集度为:
根据弯矩、剪力与荷载集度之间的微分关系:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image107.png?sign=1739280307-oHX9H4jsyNIJ8wLLfC87mzf3E1LACq69-0-3ce305a8e3c685bfab0ac9da8feb31df)
可知弯矩图应该为关于x的三次曲线。
2.图4-2所示外伸梁横截面为矩形,且宽为高的三倍(b=3h),此时许用荷载[q]=q0。若将该梁截面立放(使高为宽的三倍),则许用荷载变为( )。[北京航空航天大学2005研]
A.[q]=3q0
B.[q]=9q0
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image109.jpg?sign=1739280307-w5uGVLHQGLrBGJMkeHxohXngEllXy2tM-0-0efe35b79300cb6d9e94b32b0f2168ae)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image110.jpg?sign=1739280307-FA58HZIcm9uXHWdbzoIDp511v6jyMCtH-0-7490680161096090fbba0dc7166ff5a4)
图4-2
【答案】A
【解析】假设在x截面处的弯矩最大,根据正应力计算公式可得:
平放时的最大正应力:,许可弯矩:
立放时的最大正应力:,许可弯矩:
又,可知[q]=3q0
3.图4-3所示,矩形截面简支梁承受集中力偶Me,当集中力偶Me在CB段任意移动,AC段各个横截面上的( )。[西北工业大学2005研]
A.最大正应力变化,最大切应力不变
B.最大正应力和最大切应力都变化
C.最大正应力不变,最大切应力变化
D.最大正应力和最大切应力都不变
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image116.jpg?sign=1739280307-G966dal2Jp6I7Ray795hzFoatyEsd6hp-0-787e87c157bea1a1b660f4bc44ca2688)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image117.jpg?sign=1739280307-sr4ja7pPdirgnWeyDNeI1V4Z5HnppVto-0-efb6d1c67f407d28b3b87688fa3a282d)
图4-3 图4-4
【答案】A
【解析】设AB梁长为l,Me距B支座为x,作弯矩图如图4-4(a)所示。
在Me作用下,弯矩突变值为,整个梁上剪力大小相同,如图4-4(b)所示,故最大切应力不变(τmax=
。当x发生变化时,最大弯矩值也发生变化,由
知,最大正应力也将发生变化。
二、计算题
1.一⊥形截面的外伸梁如图4-5所示。已知:l=600mm,a=110mm,b=30mm,c=80mm,F1=24kN,F2=9kN,材料的许用拉应力[σt]=30MPa,许用压应力[σc]=90Mpa。
(1)若C为⊥形截面形心,试求y1与y2的值;
(2)不计弯曲切应力的影响,试校核该梁的强度。[北京科技大学2012研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image121.png?sign=1739280307-05whc8c5hxo3Vq7F6mYfqz4PkDFzV2KN-0-f97c43622b8349639917831bf58f8378)
图4-5
答:(1)建立如图4-6所示坐标系。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image122.jpg?sign=1739280307-tVVRfGRTWl7zpSCNeHxJlJicyorqoCF1-0-b640ccbd0404384fbe72312f469fbdeb)
图4-6
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image123.png?sign=1739280307-B5eaeR2LkNDXRH58K81LiciKoBMMsdXw-0-9a8471bf03644ec1c0478c34de6e4dcf)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image124.png?sign=1739280307-BAs7nSb10DbepLbS1NNgZYcw3wF8kmPr-0-5882667bb166f8bfe1fa1fc2a31611a3)
所以与
值分别为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image127.png?sign=1739280307-XVgldt5Rr3gZtb6RAynb2cXMHHEWhTWF-0-a454beae178ed1f0f012be4741322cae)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image129.png?sign=1739280307-yHqGV9vmOeBMRyrOvAIxXH0uSiJF2dHk-0-33df64cfbd87f5e04c126652de90afaa)
(2)作梁ABD弯矩图,如图4-7所示
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image130.png?sign=1739280307-CRGx6E1oAhwmlrjgsBLKmBsMZYhmgceY-0-949a0f6d7b856ed4c49d8c71733735f4)
图4-7(单位KN.m)
在截面E处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image131.png?sign=1739280307-MAXKENizHKZ95bQvwjJcdJGM5IX2rg2f-0-3277b543e4249518c9cc3603ca836358)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image132.png?sign=1739280307-Pn3KVYryRGGRGN3aJ0MtdCfRgbetUYbJ-0-b323c20e1983f071f5f83bf3ab7e4d29)
在截面B处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image133.png?sign=1739280307-xkMTAsXcdXfCXbqYqSBatFwOZIEUAAtM-0-5b17bb0a4ee5c01fbf08819c87da2a40)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image134.png?sign=1739280307-J5OU8qHtWMBU3MTETtMgue6xmTo0W5u6-0-f5467ec99b8557a47d68c8e86ac6030b)
综上述,梁的强度满足要求。
2.试绘制图4-8所示梁的剪力图和弯矩图。[武汉理工大学2010研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image135.jpg?sign=1739280307-A3nZPW9AZmcNTTszl0icwH5gtFzyWRom-0-25f44b8d20c2cf6527003487d41e8ae5)
图4-8
解:(1)根据平衡方程求得之支反力:
(2)剪力图和弯矩图分别如图4-9(a)(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image137.png?sign=1739280307-9bRxcjzzVzFNUZnUmsXdRqMvrDMIarAD-0-cc35bea6384372c8e8b97543e179e1ae)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image138.jpg?sign=1739280307-96NH6mmkhPS8TcoWtFnoQPaAPkp7PLVa-0-d131b40aa7778a6922d07dd54f262576)
(a) (b)
图4-9
3.已知简支梁弯矩方程和弯矩图如图4-10所示。其中:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image139.jpg?sign=1739280307-q7woxoe9qDkZA6UboCZU9xtNDXt7kHM0-0-47046fd96f008304c1f8528957cae7a5)
试:(1)画出梁上的载荷;(2)作梁的剪力图。[西安交通大学2005研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image140.jpg?sign=1739280307-Yy7hUQ2Nr4c36frp2BhUacN0TetXxyAz-0-d00b2c73180f232aed59385d8674e756)
图4-10
解:根据弯矩、剪力和载荷集度的微分关系,分别对M(x)求一阶、二阶导数,可得到梁的剪力方程和荷载集度:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image141.jpg?sign=1739280307-iRwzM3aTgRiGtBHzCDRyo57j2KqS0C4J-0-b92b260906215004224a07b788c39988)
(1)作载荷图
根据弯矩图可知,在x=0截面上有一正弯矩
根据剪力方程可知:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image144.png?sign=1739280307-Cjjc0hDQ3xTWm4RypHgFANU8ecmgqtT6-0-057c1df4486519b745dfc19fde454007)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image145.jpg?sign=1739280307-kAJies3Ozy9LWtYBIRpuEiWSNElirOyT-0-094015ad91557eafe492e8c1e865f257)
在截面左侧,剪力等于
,右侧截面剪力等于
,由此可判断在
截面上有向下集中力
的作用。
由弯矩方程的二阶导数可知:
综上,绘制荷载图,如图4-11(a)所示。
(2)作梁的剪力图
根据以上所得梁荷载图绘制剪力Fs图,如图4-11(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image151.jpg?sign=1739280307-KQutHgHgOKmNVKeeQ17bw8ggmvTPxazW-0-14b9373ce86c9245468bdde460da5b1a)
(a) (b)
图4-11
4.T形截面梁荷载及尺寸情况如图4-12所示,材料许用拉应力[σt]=30 MPa,许用压应力[σc]=80 MPa。
(1)校核梁的正应力强度条件;(2)计算梁横截面上的最大切应力。[同济大学2001研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image152.jpg?sign=1739280307-vr6yyfHREVnTTcLvfX8eaemjybBxyOgr-0-1aa84b1e52a0f1097068c8e16ab38021)
图4-12
解:(1)求支座反力作内力图
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image153.jpg?sign=1739280307-3qu85523VgZ1uwN2JG4lRyMeQ8NVlcdx-0-e37d31ace1cd764db37eb697bb511851)
梁的剪力图和弯矩图如图4-13所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image156.jpg?sign=1739280307-wBeEqU5XBydRdExocvjFAuwkTGsH8dKK-0-9a16416345715c384bfd90f8887d1199)
图4-13
(2)确定形心
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image157.jpg?sign=1739280307-EG19dWCo8x6ae7vXoAD8yOITR6ODjVF7-0-fb360be37c6899742584022e04132b9a)
图形对zc轴的惯性矩为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image158.jpg?sign=1739280307-5b3cLrItWkqGR5DMEWnqTl47atIjrmPF-0-7c27079a4ed93e0f0ca5adf70aa7f644)
(3)梁上正应力强度校核
在B截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image159.jpg?sign=1739280307-oZW6GfgfuI2DCXXEIEYDRLNCTZ4Dy0sR-0-f24e3b8897a75b2804cc86af6eeb571c)
在D截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image160.jpg?sign=1739280307-JR4gUcAyWrjbMzKPw7zCthKQgVYI6UVC-0-e5b8061b29c282c42cfdaa825ef095b0)
梁的正应力强度条件满足。
(4)梁横截面上最大切应力
在B左侧截面上有最大剪力:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image161.jpg?sign=1739280307-64XomT4z9dclOu0MnFAkyj45Sdu9gB6V-0-a923cded5e0e501c394914e26d345b6f)
故
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image162.jpg?sign=1739280307-IOmiKlf0iQuMst7AWYXwZL4qwXZOjZUY-0-baf57dba4c140ba80bcf27d1d4ce72cc)
4.T形等截面悬臂梁受力及尺寸(单位:mm)如图4-14所示。已知Z为梁截面的中性轴,P=16KN,a=2m,材料的许用拉应力[σt]=80MPa,许用压应力[σc]=200MPa。弹性模量E=200GPa。试:
(1)校核梁的正应力强度;
(2)计算梁横截面上的最大切应力。[武汉大学2007研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image164.jpg?sign=1739280307-P6NF1iruXMe4yoroG9XZpJliW8BL83UW-0-05fa668009555d44405e8e5f64d948c9)
图4-14
解:(1)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image166.png?sign=1739280307-bBZexu9jCMl6neiNMulNmqFsjfleWApu-0-7be74f8a7d656f441a9dc758f71b180d)
(2)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image167.png?sign=1739280307-FftbKfNhSF8q4ulMvjNTEXGMUdQd9icu-0-2dd368e2597fcdfbc43b9764723ffdc6)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image168.png?sign=1739280307-g69nDeRxnlkVxNS4MOx6SUPU8ZKyJt6f-0-9de17878723e01640a3d359e697551a2)