![复旦大学数学系《数学分析》(第3版)(上册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/631/27032631/b_27032631.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3 名校考研真题详解
一、选择题
是( )。[同济大学研]
A.右界函数
B.单调函数
C.周期函数
D.偶函数
【答案】D
【解析】
二、解答题
1.证明下列不等式:[浙江师范大学2006研]
证明:因为|a+b|≤|a|+|b|,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image370.jpg?sign=1739523896-yC9Rjpd2A0CTyx64xOWTfAD5GMbZz4be-0-095558224d7f6cdf5b122b3027cf7a0e)
2.设,当y=1时,z=x,求f(x)和z。[西安交通大学研]
解:依题意令
,则
,
所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image375.jpg?sign=1739523896-14wd3LAJxuyK72REublvTGSgDFeYEvdx-0-6c55ccc2fa5d23dd546b74af6d2ba8c3)
3.设求f(x)的表达式。[北京大学研]
解:令t=lnx,则,所以
4.设,求f(x)的定义域和
[中国人民大学研]
解:由,解得
,从而f(x)的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image385.jpg?sign=1739523896-ZoaYFYsSkNFQJJe7FeltUFZKmUUkyWjA-0-a7474c7f4739c421d23396e5f0a94889)
5.求函数的定义域和值域.[华东师范大学研]
解:由可得
.解得函数的定义域为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image389.jpg?sign=1739523896-NWO1Pf9zNVtSrt4AWEhtEtPicDzd3ESx-0-0387ea5c39426701819966b3993aaa88)
又因为
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image390.jpg?sign=1739523896-Di6nMHJgEnfHZRSZfBVGs044mJzUEzY4-0-4c05608f6cbd278e8e1ca06fda45e3be)
所以函数的值域:
6.已知的定义域为
,求
的定义域.[武汉大学研]
解:,即f(x)的定义域为
.
再由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image397.jpg?sign=1739523896-PktE7mh98AXZlki1TrsJhHsSAoeCZVE9-0-9cae112e7ff04749cd521c99d2c5042a)
解得,∴所求定义域为
7.设函数f(x)在(-∞,+∞)上是奇函数,f(1)=a且对任何x值均有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image400.jpg?sign=1739523896-Y5QGs9Uyh03GaLNMGERdmkpeWifginzO-0-c7e76093cfc171e72e0816e5685fcde1)
(1)试用a表示f(2)与f(5);
(2)问a取什么值时,f(x)是以2为周期的周期函数.[清华大学研]
解:(1)
在①式中,令x=-1.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image402.jpg?sign=1739523896-cHxl1kNxF2E9J2I69nOlg4IqKKqkdFVb-0-35f401c7681dd504a7d43be9e02cd760)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image403.jpg?sign=1739523896-GJ437LNWKeAfys3ZC75Pvt9F3KidB8HK-0-2de92ecf2d6d2f3e0dccd378b218b615)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image404.jpg?sign=1739523896-TjXndu9U5YumZtGqJF4hXFUwEYvU7w1P-0-379f553aa770b6b4d3e521a040ea29bc)
(2)由①式知当且仅当f(2)=0,即a=0时,f(x)是以2为周期的周期函数.
8.已知,设
.[南京邮电大学研]
解:令,可用数学归纳法证明
①
当n=1时,显然①式成立.
假设当n=k时,①式成立.
当n=k+1时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image410.jpg?sign=1739523896-mOYhTTLZlKUVpFNq108ntXTaJVDjsyhd-0-3bd9aeb8490861bb9da29a1143e1554c)
即对n=k+1,①式也成立。命题得证.
9.已知.求
.[北京理工大学研]
解:由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image413.jpg?sign=1739523896-l1Seow9LjjkgkXynS0qrItuTBp3qhjvp-0-6045d98bfa6bf89eeb8c2f3b06f7c1dc)
解得,互换x,y得
当
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image417.jpg?sign=1739523896-lYMscSWZhIPdzqTWaEelgMDXgNiUrAit-0-27d39e90758f98ee77022a5dcbeec6d8)
10.设,试验证
,并求
.[华中科技大学研]
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image421.jpg?sign=1739523896-fkh8rw5mrfROsIh32ngAHfyabte8Ggk6-0-e31975f2f67ab51bc9761faf20fa0ef5)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image422.jpg?sign=1739523896-1gqp9kULo7gJGUF0LqlPEgcbTXmRULut-0-cec307b43394fb5a08d351bba59aada7)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image423.jpg?sign=1739523896-tyhYVvKwF10hJ7ovc9XLR5UD4o0nd4Of-0-6e61219a5ba22e872373b1d9360dacbc)