![复旦大学数学系《数学分析》(第3版)(上册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/631/27032631/b_27032631.jpg)
2.2 课后习题详解
1 数列的极限和无穷大量
1.写出下列数列的前四项:
(1)
(2)
(3)
(4)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image713.jpg?sign=1739524060-tUbw979KAKxxHSLm414Wk1x43O5Vdgky-0-5125499d3dee6d5aced2963d448966d7)
2.按定义证明以下数列为无穷小量:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
解:(1)对
由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image722.jpg?sign=1739524060-oLzew2oGcaeZTvXeNVZV6xLqxBgKePJP-0-8c21d60de7c843d401286935810c835a)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image723.jpg?sign=1739524060-xJjlF1TbOCBJBaAXrVW3BOlKtdyUc6Bh-0-4d8c90aff67d1092366dfeaac9801895)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image726.jpg?sign=1739524060-VlGBtevWa6V4yUA0lvJ4pWdmZrXvjHWY-0-92c73a9e95aa3b206627afd4838d9117)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image727.jpg?sign=1739524060-lwhc9CeqFyGbta7hnrrrgRurCur2gDGR-0-6e650352f6ea9b307fe8f61b8c6f3a63)
(2)对
由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image730.jpg?sign=1739524060-HUJHmXScGDbydXqtCeq5NPNLEo4CgaH7-0-fecedd14532c6effe2dca0208387d7d5)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image731.jpg?sign=1739524060-paHUKGJz8uBYI8b3gB27BZw12coU5PeM-0-e9129927080adf941cb4af32f215a9a4)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image734.jpg?sign=1739524060-N3g2C7biwGfGGkyaba3OzI20BAa9ys6A-0-b4a733a94ea4ab94cbd1f66365c98495)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image735.jpg?sign=1739524060-PkLex2XrYORvDCXbgy6ZV2UfbhKGxwTc-0-ed9ffb7f1547405ceef01ef3e0075f76)
(3)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image737.jpg?sign=1739524060-6Zq29OspzB9kRMt09pHns8avfY6QwIDf-0-4a17f9a61da9225bc7f3cbcad8a23584)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image738.jpg?sign=1739524060-mhyuL4hsCdjcp3AosS1Vdm7ylMxBFXP1-0-759804767308a32384b022a14e108166)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image741.jpg?sign=1739524060-XvogAqCXSYOs5Ixcg8UQUhx0SfFFkTvN-0-ec4c1eaf2c6fe6bd222ef31dd356d595)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image742.jpg?sign=1739524060-aGHMhdwkWbOJ8vEJWYMdaEZN8UfdJAX1-0-65ec6550ea9a5a681200f69e0fb3c479)
(4)设
,
对由于
,
设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image745.jpg?sign=1739524060-QPLOL8FqIfgvzXi6ZwqLS9L66CGC8VKE-0-426e52625e338d09ac3f66cf1c6d262d)
则
当n=2k+1时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image747.jpg?sign=1739524060-7feWrMKzRHRW0G8YkOBZxrfalXtX4Dvr-0-748faffcab63801115c6242e95cb2583)
当n=2k时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image749.jpg?sign=1739524060-iOWhuhxwTCKBLdnvJZHUyR4Uts4mLYQI-0-b503f0d7845d99e8ebdc06b9c264eeba)
总之,有从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image751.jpg?sign=1739524060-eDDiuvONphtmzB9eU26Bg2M6Kq0ZHclF-0-bbd8c474cba5bfa64ddc43bcf95ac7c8)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image752.jpg?sign=1739524060-xvGyoLVF3TqyyceRUC5L7ATMJ7g9ddtw-0-fd4632eddf0e0c5066b004283081614a)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image754.jpg?sign=1739524060-9pxZfQqnh9vr6P18VH18lAR4Bh2wqIlA-0-3225bd2b8f3339d78c17e3db2da3bad0)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image755.jpg?sign=1739524060-KCOOVnY3S3FUp1hSGbubxPIRY0pFMS0v-0-74c26ddc9a36f5b52a2ba90155f8255a)
(5)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image757.jpg?sign=1739524060-u4fljgNbgjiWTfdPIOoXlh5uVcl0gYhS-0-6f7c5245c516f44e6368e14423968e3e)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image758.jpg?sign=1739524060-x4ZO0c1hUpg6qeSco5s1bsxDzXc0DCZV-0-45cc0fadb0654b1c3c0adca87328b4ca)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image761.jpg?sign=1739524060-DOaGOm5FzVUkPVxMhc11uInXHvhAle93-0-8025628bab7e25be500dbc09e9ec3ab2)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image762.jpg?sign=1739524060-0qG6TtweGn5kWAP7P4LpTzz67MAkJI1C-0-e42fcd857e0fc44bafefc776e6c5047e)
(6)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image764.jpg?sign=1739524060-BCVXGHkPi34tKHM1tmpSSbyrESF7X9Sl-0-61812ae1aeb0c1fc21b18d534eb616e6)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image765.jpg?sign=1739524060-ozM7PkWWakRzeAHOwjDVzbs9LHzxcBaI-0-b7129793d8b6b426a5c4b44650c0222c)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image768.jpg?sign=1739524060-RXKyJ5ZNCFqVfEMqjwuanO6fMSRnFPJX-0-0c5b440d671eadc11f3e4f85d774095f)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image769.jpg?sign=1739524060-5PEBwXYNJuWmxBuGZs1kWmwAD0RAEnvT-0-67d2f127bcc09aa103f552db69681186)
(7)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image772.jpg?sign=1739524060-Wz3YiiZwpzvoiAte48c90ZtSMQVMtRBf-0-09dbab240a4b1188401a8da9d3813f39)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image773.jpg?sign=1739524060-XPzipXKT3WzrPSR0EZDHbfVpXpnvWeYs-0-bc9817f96ff4c3f0dfea9ffc06b64117)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image776.jpg?sign=1739524060-KTMnSUdIUkBtWkNqdC1et5kRKdfdSp5l-0-3a6f562d88a61faf82d243d927a57ec9)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image777.jpg?sign=1739524060-45t2NNEf5f1vX4i59JOsjiUblrjiDX5G-0-f33aec71e152347319a2e69f7696c489)
3.举例说明下列关于无穷小量的定义是错误的:
(1)对任意ε>0,存在N,当n>N时,成立
(2)对任意ε>0,存在无限多个xn,使
解:(1)例如:数列(或{-n})即
(或
)满足上述条件,但不是无穷小量;
(2)例如:数列满足上述条件,但不是无穷小量.
4.按定义证明:
(1)
(2)
(3)
(4)
(5)
(6)
证明:(1)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image792.jpg?sign=1739524060-Cjemofelp0S295CzHPhLNtC87Bs0fXTL-0-7f6f78d942af109437f704e1b5469018)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image793.jpg?sign=1739524060-pgFhJbCUqDSLYqKS6hjXC6NyxPAQkWSZ-0-041a1a4184ea743583a711497cd8df6c)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image796.jpg?sign=1739524060-daguw4TgykOEUod5fhWRNqvHRpd9t7zH-0-44bf20d3dbbf054e356eb0a45f09531e)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image797.jpg?sign=1739524060-eF9LjYPoYPDACsNWn7U0QJYGu4D3qqww-0-802f049c222cf3e6832b5b7a33da002d)
(2)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image799.jpg?sign=1739524060-bdtqOjQzGbar9GyKuD5Vq9wlGHeqJPnp-0-f399d9ebb16facc241349f3be4e68c24)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image800.jpg?sign=1739524060-FAyJCGStlGuoiBO0a4skdr64tEO7e4rM-0-5d2abfc98f525b952d9a380cd5575d29)
只要即可.取N=
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image803.jpg?sign=1739524060-CKo9LiCrHCAOrUvmhsNGA8AW0V2WqCCp-0-90199ea41e9a8be04af35a2cf7d852a3)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image804.jpg?sign=1739524060-9u8Dh8e2UEufoFJjdgITjBD87j2JLJCA-0-c956158c9ed8899f6e6b23fa15f78a0b)
(3)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image806.jpg?sign=1739524060-I3jq3Y2pi62iHDa2aQC9ubUaoHe3fLTP-0-8973039d778effbe95736fdb90d84a45)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image807.jpg?sign=1739524060-kJE9SbSGoUon6fPNYZhrZLcX5n9u9SLh-0-6097f6d62252f0917a72175bef8f0271)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image810.jpg?sign=1739524060-Ga1TgaHPLDy4b5Y5iXymUKWEmAxmxYiT-0-64a2ecfbe00dc8e8fc96d7ba215d0664)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image811.jpg?sign=1739524060-ggB1yyPbbIUfECrwt5lDSvc4zUYHp4KB-0-34594b388603cf116c288c279718ac5d)
(4)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image813.jpg?sign=1739524060-9CgTFY1kf3UjrKz0Bjgy7iIc6NtvqggF-0-1db8f59286c9dfe571e60ed36330d140)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image814.jpg?sign=1739524060-6EqHyhwsl0kGC9qWEDMb6TiiN54cjclI-0-0300b1ec2b5b0a2ef6112fafcfe1b8ce)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image815.jpg?sign=1739524060-OcxUlZQaCKfAeSTm1esKnPUMaa1Yq0D2-0-52eed8b27a6017b7d34c4d3506133838)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image818.jpg?sign=1739524060-8m2SLZsku3xbNsXybqY61xkSOTN5p8ho-0-5b3c5b903dc51d8a14d5a5ef00528f8b)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image819.jpg?sign=1739524060-5NtD7EKg9aqJyZuu8JhsVKgZaAl8IQqU-0-01b48677a087ed69fccaa1d7c914b9c9)
(5)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image821.jpg?sign=1739524060-HUYCog6nBmlZ5vsTRmI8A2pr1I4mNZod-0-53e6df2806a392c23062142838fd5748)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image822.jpg?sign=1739524060-YuD36l2Y9UbDBoUShQMKBasZsDph3oqr-0-7c24d25737ea4d84315d6c845005568f)
只要即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image825.jpg?sign=1739524060-nFU4w04qDhPJLKSjPLviinRAQRjX3f6S-0-ab2a978721c4ac17bf4c44076e409988)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image826.jpg?sign=1739524060-s6ascChhzEO2NIJfpiImBeT1Z9KRQgAd-0-1ad3dbcae178861b119b43c183263ccd)
(6)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image827.jpg?sign=1739524060-17QgM8jxTkDMRsWxNgoyEIhhm2L1q0tC-0-f7b3799b84f42f2bbe5193a38310bf78)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image828.jpg?sign=1739524060-ZSfutqUsYOqyJ33351zV4mXZkG8EZiA5-0-7894ca4af2adc5c366cb863c1117988a)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image830.jpg?sign=1739524060-xzftcJsJd7IUrZIH46Ot1PTQXIFlLY3G-0-d533ddcfcb4c760bef3ea17d523dd65a)
只要且
即可.取
则当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image834.png?sign=1739524060-wnkmIFP7XINfTXIGxjXZJ6bxyu76k1Xk-0-481ae9cf679771bf2de9e88d3ee5b1a2)
总成立,所以
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image835.png?sign=1739524060-iXdg03mzadsh5AMeYSQ9YkqjHmyjuGhe-0-5bdedd872e0e100f2eb1999ddbaf60f2)
5.(1)按定义证明:若an→a(n→∞),则对任一自然数k,,a(n→∞).
(2)按定义证明:若an→a(n→∞),则|an|→|a|(n→∞).但反之是否成立?
(3)若|an|→a(n→∞),试问an→a(n→∞)是否一定成立?为什么?
证明:(1)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image837.jpg?sign=1739524060-l9JBydLCuZniS5RK9FuLWMbJ4LQMPA78-0-d341c6c22ceba0a5beb9392eaa0d63f7)
故对当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image839.jpg?sign=1739524060-N4EiBQXmEeEfafgNKINyj0H7r4bt57oL-0-631a43c874bfcfb5bb8c3bfa9a2cf80d)
则对>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image841.jpg?sign=1739524060-z7WmnGCgl61N92MuzL2yzPVJ1gxq9xOj-0-f3141d68ddf22d6f89a1831610db4a5c)
于是对当
时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image844.jpg?sign=1739524060-iBrp3eHcYn1yjaFcumO1zJOB4RbDfgcr-0-e9692413347dbe7ba26c71560b51253f)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image845.jpg?sign=1739524060-g4uJEr8dhsBYqHhOXO4mD45S314Esszd-0-9a8aa996084d8d483fc5cfac055ac53f)
△此结论说明:去掉数列的前面有限项,也不影响收敛性.
(2)
①由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image847.jpg?sign=1739524060-myOHgob2El6VHu4rFrVqIJyMZDQWTw4C-0-31fa14d0ff0881ce73fced75863f2baa)
故对当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image839.jpg?sign=1739524060-N4EiBQXmEeEfafgNKINyj0H7r4bt57oL-0-631a43c874bfcfb5bb8c3bfa9a2cf80d)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image849.jpg?sign=1739524060-9POR14OMPecn0ePydrXqXcPYfFucESEB-0-51a088fef1e54b0d72ca26e2da64accb)
于是对当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image851.jpg?sign=1739524060-YMCROM7psdUq9MpO5JoKFdbDm01M1fjl-0-57238949a271ebbb77d76088843186ad)
成立,即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image852.jpg?sign=1739524060-SY2Y65eueu4zfAroMdRPd13rBxEa2KC6-0-629c13d5c181d9f87b92fb2cf96f82ac)
②反之不一定成立.
例:a.不成立:则
而an无极限;
b.成立:则
(3)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image857.jpg?sign=1739524060-LEwPEBJRO9EI62G2CWmSQ5TpW3iiTk0c-0-d2e578a8b8afb4ebeeb9c3558cf61474)
故对当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image859.jpg?sign=1739524060-q936xQvw677mvB1m7po4KfBlnt8tYT5T-0-46db45773c4f701b1dac5fb8fbcd7fe3)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image860.jpg?sign=1739524060-vQHRwPfgCpKXiqvcUKfEnNJE6Wtmj83f-0-eb21da3eda88664958b64d2433214d8b)
于是对当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image862.jpg?sign=1739524060-Hh2s8v5qwKGuhk4HapEwkusmXwTwBILG-0-374753e12904486c80d6ead62cfc5432)
成立,即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image863.jpg?sign=1739524060-7HsdOo9gMBANUdXUk4Bih8Ks4hiDYQv5-0-f759fb2dfe0ce24b64d60ec95406595a)
从而若则
一定成立.
6.按定义证明:若xn→a(n→∞),且a>b,则存在N,当n>N时,xn> b成立.
证明:由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image866.jpg?sign=1739524060-2NqQViPcOX2Goaam8kgTUXw4H1Ob3yc6-0-376f0b444b375054d50f82f6bda4f555)
故对当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image869.jpg?sign=1739524060-5Q5S83nH7rE5ygWwR5S1YGa4CMuYVED4-0-9f987d9f8800b869ee00a7d2feb01efe)
即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image870.jpg?sign=1739524060-GFcWkHD9tiXwXf5IdBr7JD6wG04OesQE-0-8ebab02140e3b0f2aec9770d1d85eed5)
又a>b,故a-b>0,则取从而
当n>N时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image873.jpg?sign=1739524060-0JGwUJBebsLA69CBkFRST2L2XTkK4WV8-0-dd6a94598e47098a413736b672d6e7d6)
即存在N,当n>N时,成立
7.若{xn,yn)收敛,能否断定{xn),{yn}亦收敛?
解:不能.
例:则
收敛,但
均不收敛.故若
收敛,不能断定
亦收敛.
8.利用极限性质及运算证明:
(1)
(2)
(3)利用
证明:
(i) (ii)
证明:(1)对有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image886.jpg?sign=1739524060-DpxgIazvxRL1SorSrzIRgFIZhPK3emtW-0-8af633900d46dfa9bb1d213e1d8b1f66)
且
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image887.jpg?sign=1739524060-RJyjSrjJyEBftDUhzqcdPAADRdKLrcd0-0-90f3abd7ce926c7816eb3348a6466efb)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image888.jpg?sign=1739524060-Got7eF7xS8YT38Dst8YaA3KHhrjRJRw5-0-3ddd508422a46cfd86c50439f5b9335b)
(2)对有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image891.jpg?sign=1739524060-xA0rkB6Z0nG1fp4ADIA4wMdVLyjpeiv2-0-fb59113473b9f8da1c4d8c1386adad20)
且
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image892.jpg?sign=1739524060-q2SixVTvCR9frHCVyZWJnlQaPQ8BLmLU-0-54cb732e31206e489d9bc32a16573b3f)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image893.jpg?sign=1739524060-qh2gPlcQOWTwhT8UM5lNDD85cAVS8ZBg-0-76a98da9f8f9676370f4d9ee02501a74)
(3)(i)设a=1+h(h>0),由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image894.jpg?sign=1739524060-IXcwLrGxWWDYzFb2bm9AoeAhJLYezqvg-0-3a60cb349506345305e99d86e80ca8c2)
又为定值,
则
从而
(ii)设e=1+h(h≈1.7),由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image900.jpg?sign=1739524060-QpFs7GaC5s2WTEy6Z8gt3StcywwfE9PY-0-0d72d321f0d4545ccce8443516ff8934)
又从而
9.求下列极限:
(1)
(2)
(3)
(4)
(5)
(6)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image913.jpg?sign=1739524060-rMmmwWFND94Iq21ws18aLJoq6Iskj70k-0-b523819dae1fbdf9f3e4f749283704e5)
(3)由于故
又|cosn|≤1,从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image916.jpg?sign=1739524060-qi6S1dyuNKKYgV9i8oYq1X64GwphV6Bl-0-c666db956c7c3b8103ca0a3affbc4c1f)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image917.jpg?sign=1739524060-24iZALyvJFWeYYYLC05AxOoQ3KRyUphD-0-e0e5ead1becb2f163dfc6bb17bdcd73f)
(5)由于{sinn!}为有界数列,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image919.jpg?sign=1739524060-AOYktLZ2Iuh3eyzQ0vTo2AZ9G9QOui9S-0-d53caa6ffbee8a0a8518576a2c010d04)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image920.jpg?sign=1739524060-HkdKqgg4zumytVxMywyLZ2Ngg50W9MiI-0-2dd677d9521b68b0a8a20d36066c0083)
10.若试证:
(1)
(2)(其中
).
证明:(1)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image925.jpg?sign=1739524060-rxwnt0xWzIWwXFEzf6avCkScE4J3cBsm-0-ab6069fed306e6d29162bac930265a06)
故对当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image927.jpg?sign=1739524060-UTaXw1fWY8OTUI199ezFm7BSsg72v4o2-0-c6b7e5c0fec099b2dbfccb703c429f04)
且
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image928.jpg?sign=1739524060-iYZ3z6TFhaSXszyXyUJqbEyGamLPfFVM-0-6e0f0d1e46160f4cd10dc2d34151a0a3)
即对上述当n>N时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image931.jpg?sign=1739524060-5fNEpmivVfeX4h3n49IXfsJrfzs835oe-0-3ec35b01cac5bd31e2aa5b7460e12ea0)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image932.jpg?sign=1739524060-sTEf1OHbBuwZxbvBUABHM4CyRbHbGAj1-0-83b50c99ac9348f4eff1f110c520496e)
(2)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image933.jpg?sign=1739524060-HoTD0UNAz5gwYl6xGrYD0nFgo5LPWnNw-0-0dd77b9bd02e58b450b9c10b95e21bb4)
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image934.jpg?sign=1739524060-gDFK87QN0oso2Lvu50mliImFmgid4SMp-0-58f952e1e13b133cc1daf80491c2509e)
则据(1)得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image935.jpg?sign=1739524060-yIjySNIeWbrm3opPOO6L2IeLH0P9rImy-0-a12e5e04ed75673e6090b7c08ee5991a)
11.对数列若
→a(k→∞)
→a(k→∞),证明:xn→a(n→∞).
.
证明:若
故
使当
时,
成立.
又因故
使当
时,
成立.
取则当n>N时:
若n为偶数,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image950.jpg?sign=1739524060-IRrlEqz1DvobSa9rWRMl95kJTbarqAAF-0-c06e58ddf099f2381e281b8192cec3cd)
若n为奇数,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image952.jpg?sign=1739524060-zLBWIGfgqRBoHMS97Bjq1OAaffcm5ugZ-0-46428e1d6845ddcb8810dba4c8f4605f)
因此
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image953.jpg?sign=1739524060-gBDImOLn0dSAu71Vy6u7VnMDaIxxszvo-0-f928aaf753d6f6fe67768f80e3f32692)
12.利用单调有界必有极限证明以下数列存在,并求出极限:
(1)
(2)
证明:(1)显然假设
则
由归纳法,知
是单调增加的,又
故得
于是
即
由上界.从而
存在,记
在
两边令n→∞,得
解之得l=2,即
(2)显然xn≥1,由条件知
,
故有界.又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image972.jpg?sign=1739524060-imnNpDHNfKLHzZGotfOTq2OPXN1SRKS1-0-64a456c5e08d9e581ef4370c08f913e6)
假设则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image975.jpg?sign=1739524060-CyIgV88Qp0luattRpVuw1iDd8NFZaYoy-0-96dc272f29fefc4781de34d34a5f5c6e)
由归纳法,知是单调增加的.从而
存在,记
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image978.jpg?sign=1739524060-qgCqr4zHAJM06krWOMBQwf41boXDF2lu-0-e88928459783d0fe5c8916361c9ee7bf)
在两边令n→∞,得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image980.jpg?sign=1739524060-vgRFjCiamJ5RqFXAg0Io089POysNNmEt-0-bd59e482f038ac16d54f3dee1cb7f232)
即l2=1+l,解得
(不合题意,舍去),
即
13.若证明:
证明:由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image986.jpg?sign=1739524060-pbGkqwJP83uSXrodB11C3u1lOwNfTB4I-0-cd91ff9601846e0f8ac6977fb9ebd9b9)
且此等式当且仅当故
等号成立当且仅当
又0<a<b,故则有递推公式,得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image991.jpg?sign=1739524060-xJgGiYPfwCcwFn34j5cjVc8u3iq6dMj5-0-3334a144ea4c881a78713627e5834446)
且
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image992.jpg?sign=1739524060-CEy7TDfztWOsCfw5wBQZa3p1OpmrIOQ0-0-8feaecd1c5a615a2e73ae66529c69544)
而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image993.png?sign=1739524060-Nm2HsbIXw5sfRkk3ZICeFGP4edR1PHhs-0-7226ce99c068dbadc1e1436222669966)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image994.jpg?sign=1739524060-UM1V0HcX92sYBxZrLyRZyh1gNihXAwLv-0-8ee477086ed8b40ae2b5bb50ac436f22)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image995.jpg?sign=1739524060-1luZC3vcUG5elZ47pvQUMrdM7qyQQ0JW-0-93256a95c80771f3c326e0f86e1fd093)
又由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image996.jpg?sign=1739524060-br3StNI0ktSQLxGokCzLzRBfNwqfC8t6-0-8248858e015668779a3876f90b1e86cc)
得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image997.jpg?sign=1739524060-WSggeMs2zmKaTN7gGjuLnsME4qrGBq2c-0-2eb47a0d5825670c6f98a644568ecf2d)
说明与
都是单调有界数列,从而
,
均有极限.
设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1001.jpg?sign=1739524060-1WA2ZgV0vvilndGINxHZnpKtueUFyO4D-0-e177392bc91cfda6f2028cc2adbdc82c)
又由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1002.jpg?sign=1739524060-wt29J85ljq5mlYJ7DsAaGYQChDWEpDoT-0-fd5553848297f325c71f492e7bd1df0a)
得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1003.jpg?sign=1739524060-GRuT4YvJI9eNJnbU01sIaGdFXRYTg2s2-0-6c47a99c5486f7ad08c12be1d649f6ae)
在等式两边令n→∞,得
,
又由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1005.png?sign=1739524060-AAm4TYBafPHQPmphQE7ysKe3MNEPphFi-0-6642bfb41f90d8d05ed90ce5bb834353)
得0<a≤α,从而α=β,即有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1006.jpg?sign=1739524060-VXxw8ADX9FwMf1PKvHf1jkAVBXXTzk7d-0-990d2e7a9e6a523ce877672df1fdf89d)
14.利用单调有界必有极限证明以下数列存在极限:
(1)
(2)
(3)(a>1,k为正整数);
(4)(0<a<1).
证明:(1)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1011.jpg?sign=1739524060-0RCzvOpobeicXJkbDZ7NaBtcTPf19kKy-0-9d230154bf7b1cea8583d26568037b1b)
故则
为单调增加的.
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1014.jpg?sign=1739524060-hElzHYaO63dyfAWyFkE50lp1j3mwohDh-0-2af07997982f70d80ab97a52a79066f2)
故有界,于是
存在极限.
(2)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1018.jpg?sign=1739524060-h6GctOkEUgfvjmCogUIyAsbRFdXWa9sm-0-a5eb81b97d623200cc3cff34d0933610)
故则
为单调增加的.
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1021.jpg?sign=1739524060-api6mMEDeB6HXzkqEsre0k2sI7N75Syq-0-952bbc039677f0f511df1d56ddc5634f)
故有界,于是
存在极限.
(3)由于a>1,k为正整数,故则
有下界.又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1027.jpg?sign=1739524060-bljYsyRLMmNwFPlyNmSA3ospR5kMIAsk-0-00c307d3465eb2bea126a00e8ec3dd28)
故当n>N时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1030.jpg?sign=1739524060-IpoZ0x995lHXu6Js4mNgxWJgoVi7Rtys-0-1d2cd0a1074e254d94d444720175aa84)
则从N+1项开始都有于是
为单调减少的(n>N),从而
存在极限.
(4)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1032.jpg?sign=1739524060-5F3Zu8mvNbUHtJxYnSkPm5eNZXjAUmxR-0-82079faa66224c307bac703e16131d4e)
故是单调增加的,从而由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1034.jpg?sign=1739524060-isQuENwxssZWUeIvFGiP19iLqXYQ6bdU-0-08fd14a86f6866271823b3f5bf02772a)
得是单调增加的.又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1036.jpg?sign=1739524060-UuqfqFiLNTRqOPlNqJHBZ1aUbvTsKJhT-0-f05e93a9de04547e0cb6cba61cf48d41)
故有界,于是
存在极限.
15.证明:若xn上升,yn下降,而为无穷小量,则xn和yn必有同一极限.
证明:由上升,故
又
下降,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1042.jpg?sign=1739524060-WUFBkXzzlmnPkD4O1X2AhDOeQizNoZVu-0-f7924bb50920942a44350c61b1493fdb)
又为无穷小量,故
有界.
设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1045.jpg?sign=1739524060-4tUkCuZ3TLTqxTHShwYbwchNBQXyAeWU-0-59d647438453803dca4759bbc77ec0bd)
其中C为某常数,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1046.jpg?sign=1739524060-SbkK0alp9gFaaPgfVNDRYfNggLI3kmAi-0-a3e0caf97a8d78642a5958c3d3d17568)
即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1047.jpg?sign=1739524060-d0QmJsGY7RbDRJpUZ4mOYhI13tLkYhkr-0-2357960b87d0997e0c3b592c94c51f6c)
于是有上界,从而
存在极限.又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1051.jpg?sign=1739524060-lS0rMjTPurhAbbaB5oVFmapLXB0gdgVf-0-4d4a69b86e44a5807470fba75917c4b2)
于是有下界,从而
存在极限,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1054.jpg?sign=1739524060-vWHjj8OLZ3EbjQuP4oMYHRrU3pjIZhRq-0-2802d224c46a436855a73d05a7db8a13)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1055.jpg?sign=1739524060-jKb88WScHCBWWfaHurKzYGvxeLpbyaw4-0-605be911dd4c07b2cb5871c623735021)
16.若试证:
证明:由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1058.jpg?sign=1739524060-Y4zN1NLba2wms0Rpd6jm6Jt0mgDvOdcR-0-562d30f701dfa8431e768d96277c48f3)
得:对当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1061.jpg?sign=1739524060-orzY4AyqdwbXDlq8GYpntQ7B7MbZlyn7-0-613ae3bed3f7f4a37b442f16e34165db)
则有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1062.jpg?sign=1739524060-K1GNAaILhqqRh19ffUcbV9lGJdxlLoXB-0-c8f5992709e5fd5dd7faa4c53895ce46)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1063.jpg?sign=1739524060-QIexeDWk2HGYkqJfbF1ecZ23yK6kFjwn-0-9e3b972fa58983d63a6da2f4cd7734ed)
取则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1065.jpg?sign=1739524060-5LzY6cqdyRtrYCoRfcKKdJ0OqOBz6V9c-0-b5e7e2b5dc5569b851c542b8fc1ca953)
又为定值,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1067.jpg?sign=1739524060-lMfGceUWFtsEOoUv4KXotGNt0iXxd3r0-0-c888152937b7043ef2678d72da77851c)
于是对上述当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1070.jpg?sign=1739524060-zpCcxVj1aYj5gUe6L12HcBJnumiYNLqN-0-acda17d62910c5ba598d7a6fab3078fd)
取则当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1073.jpg?sign=1739524060-KFjycdDTjkdkOA9pShpYgKedd5PnvCfP-0-6490892f3882f4030ad1ccd7710408ce)
即有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1074.jpg?sign=1739524060-R5bbPVcRlCWwtlYKua6vNaek7CFfyO51-0-7958e529ce5206be949cb7e91c26c433)
注:若存在.
例:则显然
但
不存在.
17.证明:若则
证明:(1)设a=0,去证
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1081.jpg?sign=1739524060-73Bor6jet5ZotaKiClG8tu1vufEdTqpw-0-81f067c18b33a81a82173bbbf4289d2d)
由则据定理
得
使
由则对
当
时,有
取于是当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1092.jpg?sign=1739524060-0zI8bWwVZVZlnZCcMfzpEAxDeFYO1SRJ-0-48252b2ae608bf8c110a83941172a6e4)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1093.jpg?sign=1739524060-81HWN7sRmHf64Ev3kFOgGBl9skAZsj2N-0-a3c2531d99aee7432e7f5986c95a9516)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1094.jpg?sign=1739524060-dr6vi0nAfvqH6HmyiCQunHlkmktAp8Gy-0-a41d4a620dd09b18ad1992232b8cf7fd)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1096.jpg?sign=1739524060-P3e3jfBmJ1FwvRnkpKepIh9f7uwACzPP-0-19935db104eb379a6d52d07a2540f94c)
(2)当时,由
得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1099.jpg?sign=1739524060-xy2cWKPusnbm0vKZzB4zL9Ww4t8R06UB-0-572376aa7816e45364260c21c6a08060)
又故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1101.jpg?sign=1739524060-tmyk2KsHF69QleYuZhEHbCIwoFvoiEa2-0-c3b09c8c0841d8ed2cc3959fcb7e2178)
由(1)知
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1103.jpg?sign=1739524060-iQtYsZnCl9wXVqio1kMRmwQrnOwCahSp-0-92d3f0b87da721cd8568b19d02822a3c)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1104.jpg?sign=1739524060-Q7pRWPG4e6ATSrY6U7OFujj7PxpQsOlF-0-efb3f1aac40de724efb782ff264223d3)
即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1105.jpg?sign=1739524060-2wQejugEy0SWLUi10wIcOtiXL35jFraE-0-c153033d000e3046bf2b9340df61f37c)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1106.jpg?sign=1739524060-esOXwIOFuoSxLQBkfGi5PtdGEgNgl2bg-0-b1c2ed394fb30405f0f31451aafc651f)
18.按定义证明下列数列为无穷大量:
(1)n!;
(2)
(3)
(4)
解:(1)对由于
要使
即可.取
则当n>N时,
总成立.故
无穷大量.
(2)对要使
只要
即可.取
则当n>N时,
总成立.故
无穷大量.
(3)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1123.jpg?sign=1739524060-qiOANl4nPzFxsfqo5xN32hDuvzhyEtQb-0-2ca14d185d1782642535c61382b4d442)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1124.jpg?sign=1739524060-BmCkZI1vlwo8GvmUcDnx520kba7N78Jm-0-150fbce7ee93c2d1e5ee0efbdbc2dd05)
只要即可.取
则当
时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1128.jpg?sign=1739524060-HW9nc9JmqL8PnZqW8MvDCkhZMqpwqmOc-0-37fbba9d1a3807f2e284b36dcab6269d)
总成立.故是无穷大量.
(4)对由于
且
单调递增,则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1133.jpg?sign=1739524060-Ax7HbL5sALwn7exealJ2dv5Q91DEr4yF-0-b235e13e9e4985519966a5b44ca052e3)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1134.jpg?sign=1739524060-6NYBZ2wtFaFZkskoH3sd2GtoGGF9J9xC-0-2e00eaa6c96a9bc4201847cd19045fc7)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1136.jpg?sign=1739524060-INK9Yk00cNkQQ4AptkvBu0CwWs6NKcXo-0-199d23894701961f3d6fb92a309d2373)
则要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1137.jpg?sign=1739524060-VjKkCSzL4WcVnThJACuk9I0Kcd7xa1Tl-0-fab57cdd11e5f9c59e9b75ac4ffca93c)
只要即可.取
则当
时,
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1142.jpg?sign=1739524060-CQrvIzFJawkQ5OgkzMpPXp38rH8V5NF7-0-f74aa31f4476f8263fe2cf9c1026c6ee)
总成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1143.jpg?sign=1739524060-L7UPHlSboEaWKqnK6DVuaAXHtS0rjZ7X-0-e0713c0533a19e8600ca0bd938d23310)
是无穷大量.
19.证明:若(xn)是无穷小量,xn≠0(n=1,2,3,…),则是无穷大量.
证明:由于是无穷小量,故对
当
时,有
又
故
存在且
又ε是任意的,故
也是任意的,从而
是无穷大量.
20.证明:若{xn)为无穷大量,{yn)为有界变量,则{)为无穷大量.并由此计算下列极限:
(1)
(2)
(3)
又两个无穷大量的和的极限怎样?试讨论各种可能情形.
证明:由于为有界变量,故必存在正数m,使
又
是无穷大量,
故对当
时,有
则当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1165.jpg?sign=1739524060-WzmtCTDUSAG8nSutj6hgLQqOzFwOooip-0-1aea24cd392969539bdf46c6cebfbf45)
由g的任意性及可知
且
是任意的,从而
为无穷大量.
解:
(1)由于
(2)由于
(3)设则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1173.jpg?sign=1739524060-jMky9v3Z7DEZx0B3Urx4e9dWOFXpKIVI-0-b1998140d797bf54109ec203036ced96)
故有又由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1176.jpg?sign=1739524060-4tfHIn6DSSNZ6a54485rqedKejDp5dlk-0-d469bd869fcf67b0390e7481c8a5d627)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1177.jpg?sign=1739524060-u2LuAXOvhm0etsvV9Y5EirL46EgHgUBd-0-73630ac165851fa875f63d431e23c349)
21.讨论无穷大量和无穷小量的和、差、商的极限的情形.
解:(1)和、差:因故
有界.又
则由上题结论,有
为无穷大量.
(2)商:当时,由于
则有
即
22.举例说明无穷大量和无穷小量的乘积可能发生的各种情形.
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1186.jpg?sign=1739524060-vtisNuroUoU2q7Wm5Vem6oD0nTgFQrGH-0-88414419386a6f68f4610bb8ce59367d)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1187.jpg?sign=1739524060-7QXeaGSesPrsvWSK5nGdpBCdrm50ZmGr-0-ec8437e6ca3d7e77c68f60de52826f8c)
无极限但有界
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1188.jpg?sign=1739524060-xtjoPzMXHJrue1QLa1yCHcZvPjo6y6yk-0-1f7626a524112ed02758c3b2ca5b2f0c)
无极限,无界(但不是无穷大量)
23.若证明:
证明:因则对
当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1194.jpg?sign=1739524060-guulgOzem5P2CbbKwvd7pdyBUtD2cAf6-0-9c2410d55de7153ab0cf26184b445776)
又则对
当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1199.jpg?sign=1739524060-NpnIae69tKsAl2Jla71h9F9vLroVImln-0-74fedf1551e7d22217088de7ab8d4680)
取则当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1202.jpg?sign=1739524060-sg4sggolWMq8T3vTCuX9n6093DmIEiD8-0-d272e8e74786f79f40bbdd9a96daec09)
即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1203.jpg?sign=1739524060-9XJJp8ijH3j1nX266ZYo0tmeVRupzQKz-0-1e23e78c9c569eb1f61113bd5bb78821)
由的任意性,得
任意的且
则得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1207.jpg?sign=1739524060-EkH6R3JW7ELCnkuUWsUJvgpXWNbp2CpG-0-0dec3f010970235fb6d132b52e3a0deb)
24.若证明:
证明:因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1210.jpg?sign=1739524060-PVy8ojbCxbCIkpCFSeScGN3ZsnQTeRUh-0-f49dc97990c1cfaf1db01b8abe1aa645)
则对当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1213.jpg?sign=1739524060-tyQ5IuD6XZTagfMr0tpPr82eEbH78NBc-0-444a56c9a6f439302686d4c3965c824e)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1214.jpg?sign=1739524060-s8T1LZ2g4qUUsjUchdr7IjaUz1C3vUEl-0-e90d1fc0beb0cf0e32af4040dff3a26f)
取则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1218.jpg?sign=1739524060-FUlg1QIFGEDKWL2YjPfdktcpBeye9GGz-0-7cb9d5ae51cdbfefe6562e4eba5942e4)
于是对上述G>0,
取则当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1221.jpg?sign=1739524060-nwISPTUvHSmXhnrH1WzydmNTbvNZST3s-0-f915d3996cba60696166e77c5da61093)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1222.jpg?sign=1739524060-oVv0cPmENJO9aDt03UyrJDLMUvASquOZ-0-1cbf2d2e7006e0bbd26eb807cac06826)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1223.jpg?sign=1739524060-Lq0Ot2KWnqzWH6R3npRBQHhfCBAzwKSV-0-7e081814ae5e69cd3ac3b4d8bb3b58bd)
故对于当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1227.jpg?sign=1739524060-uzwq8HeQDIb7DVM9LsLcBK3l00q2mbB1-0-dcbf0994cc3cb66e99e0901173423e2b)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1228.jpg?sign=1739524060-oH2YFr8XmikpvENNVYp2DCYHDArnZBVx-0-d8024ec39b9f84cdd3901ec8a10e5eb6)
取则当n>N时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1230.jpg?sign=1739524060-mha6C0WsCYW0OZGgKjBiS8bAnUF0Z4Rd-0-9ffa81543d77e66ed561c3c56d52d46b)
由此知
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1231.jpg?sign=1739524060-w7n391NvPNdI8sm4GNFd1fuERpebItU5-0-974b50e3d89f179832da0387ad61e647)
§2 函数的极限
1.用分析定义证明:
(1)
(2)
(3)
(4)
(5)
(6)
证明:(1)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1239.jpg?sign=1739524060-AAjWIw5eaPsN01U8TfxkBSiQb9sy02Gv-0-9c7e4a432c54dec417e0ce84efdcc753)
因x→-1,不妨设则-2<x<0,从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1241.jpg?sign=1739524060-IYRKfGazHk8xLl9WCVt1HjW4IVxlQeGJ-0-38266434344466a640095e215c015d62)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1242.jpg?sign=1739524060-uP6FfMNVUDOdTQTvuW4ObOOXJn8AEQMJ-0-0680f635ef7eaa5a702da7e411adce30)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1243.jpg?sign=1739524060-cXpFNKYJXfgfLpx7KitazH6GsNxfguqd-0-99416745a1e698439a22cfd4762251ce)
只要即可.
取则当
时,就有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1247.jpg?sign=1739524060-7NIu9vnZF4FGXJ7ZQyg1cckFk2a7vwkq-0-c6e9969598d53fb7bfa131468374dae8)
总成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1248.jpg?sign=1739524060-6FlkzM2kij0tRp0CLAi3IGUnJFHPbSqG-0-29fd6ac8dadfe8ee11e33aab10f59743)
(2)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1250.jpg?sign=1739524060-GpxGWucGus5rZwvkqbRjrXvY2qjZUUFj-0-5eff3eaa9a0db03364a88562fde83179)
因x→3,不妨设则2<x<4,从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1252.jpg?sign=1739524060-g3tRKpLQtK1ZGa1vCAYfJ0C0FdQuBbco-0-23984932d49ae9574aff2b7c8c58ec00)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1253.jpg?sign=1739524060-gZJz7GjLLC1rSlO8YFuXnAcrJ7hBqeHy-0-8f48461f7138c77a2115c379c587fd4e)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1254.jpg?sign=1739524060-BbGgafp6Dl9He6EQfBzoJqajGCfCY2BE-0-69ad1e557a845832fb839a5d84c254bf)
只要即可.取
则当
时,就有
总成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1259.jpg?sign=1739524060-nSHtJLw2aMm6iQMI9tVkKBI5H4aHxJu2-0-b5a8d6c9023a30dd933f469bfcd451bb)
(3)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1260.jpg?sign=1739524060-8YVDUfcKS5HNbzm7PPtYakv8WWNvoW2j-0-dc7bf88d8291a5aa5ca7ee7134952f42)
因x→1,不妨设则0<x<2,从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1262.jpg?sign=1739524060-F7RrXQMQZxdKxcoDkSpV9FAVHwz10u1P-0-dd5a5dadcde1631fa4f52622cde54093)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1263.jpg?sign=1739524060-3TeG8b9s2BjEJNN43bxXEs7alyBg6dlH-0-f3e82c17d8a975c441989d7f3d33d666)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1264.jpg?sign=1739524060-oH7SrWehKEY1YQEbjJ0RmQw6RNhhMvPD-0-e6993e60e47db99f4c4d31b8b5005edf)
只要即可.取
则当
时,就有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1268.jpg?sign=1739524060-NE8AMz0dCrHAlAu2cgkmg0knnpT7I12C-0-054715457a0f275d045f79bb255967d6)
总成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1269.jpg?sign=1739524060-zPW4wUicVNuxIEPSW3QyFpvyNXRBLdHQ-0-39afa63ce6996d44abb03185dd4045ea)
(4)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1271.jpg?sign=1739524060-hy8n6HOBUtlAhU9fR4XD2VR06LUzenCd-0-ceb88659298a00a8d26f7a030ad1bcdd)
因不妨设
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1274.jpg?sign=1739524060-uT4RiRdEQQ5CbS40qGVm7uY5wC6rIm6G-0-2da0b701f24d71ef07425e8b5c36a4b6)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1275.jpg?sign=1739524060-WUNUq6at4uSAtZTweIvcOHyUH0PRi032-0-edc9a638d7e71c55d046b5c7ec65aed1)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1277.jpg?sign=1739524060-h8hK6hEP4D7rYc5UH9WP51iH7uZV5r2a-0-829313f8ad4eb2a7b804dd006f1cf5a1)
只要即可,即
取
则当
时,就有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1282.jpg?sign=1739524060-LMBM6TebMZBrVE6O7tYvU3ao6Q57RJfY-0-e2084774066b3723ed1a7e152100c5f9)
总成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1283.jpg?sign=1739524060-r6DzLbS4K7279hY9z6hWu05RX9lnzQ5y-0-101cfdffa4a83d6838cd58be5d015af9)
(5)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1285.jpg?sign=1739524060-Yytjy0yrxxnedsxG8SZiwDOGc15U3c0u-0-dbb4382a559bcb47f5c6f3395e209810)
因x→3,不妨设则2<x<4,从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1287.jpg?sign=1739524060-aFzikh8Tuq40rufg2WaiObKqxqOTuLrI-0-826b64f0f03624e69524c91e00de44c7)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1288.jpg?sign=1739524060-zhvB2cZl8IinIozx3Lp0xcVSnklE1TW1-0-56cba39d8d03c5e9736b0905dc6995fd)
要使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1289.jpg?sign=1739524060-9UnY3JuYJkgAIywU8HbK2GHXwTha0r2Y-0-a7a94b43015d74284eac65936837da54)
只要即可.取
则当
时,就有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1293.jpg?sign=1739524060-gen8jgeZENookSoJaqW8fegOhJbTqkRZ-0-151caec13a557e3aee1e9973076b8213)
总成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1294.jpg?sign=1739524060-KYWh3q9lv7Qe8U3wysChE9rLWLCMgxW2-0-4ba460425e0ce3d088ad692f41593455)
(6)对由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1296.jpg?sign=1739524060-PkzkyhlAefJMzaxpBTr1y2S1tis5dLGt-0-e318109f6e2a6f17d1dbbed154e1ca64)
因取
则当
时,就有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1300.jpg?sign=1739524060-6hOrQPHGaO5ApVr67F87Hp7Jfc0aUkJi-0-1f99f9dd4690e58b9fa3eb7def43ad45)
总成立,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1301.jpg?sign=1739524060-h18GvFMt8xDvURwMLPBpwGzCuHzwCww8-0-902e8ea4a233c41fb31469e97d843a34)
2.求下列极限:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)(m,n为自然数);
(10)
(11)
(12)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1314.jpg?sign=1739524060-zR438YiolfLi0XTsAT2NZ3uoTPhFwnHH-0-2aa18444b7d7001c6f35f5c79a027e80)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1315.jpg?sign=1739524060-gNa3kuCA16kJcf8uk39qsqJ3Hdyqkarb-0-05db91c1cc8d443a299a8cac5dbd9074)
3.设式中P(x)和Q(x)为x的多项式,并且P(a)=Q(a)=0,问
有哪些可能?
解:由于P(x)和Q(x)为x的多项式,并且则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1319.jpg?sign=1739524060-awzo7JCyJkWWAInkd4vmojDT4u7OFYFk-0-c5b4525a3b65ed20cedcec54ee9fc677)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1320.jpg?sign=1739524060-Rnh5LzHsc8UXboUbHryLwVa3pVg6UfFb-0-d8c79eb1d541ecd17b39ebc01369aeb9)
讨论:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1322.jpg?sign=1739524060-Wzf5Gbt0jKRGUcsr3bGpEyK0rg3NZzvl-0-ae965f42d9a0fa15875717ae1b82f102)
4.求下列极限:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1335.jpg?sign=1739524060-4ZJ2fyxqcOrGq58KahTRC3KnE2qsQHDO-0-e86654aed1f890b9a55c2ea2288c651e)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1336.jpg?sign=1739524060-YK9H7ypTROXoxTN1Zyt6vhNGVQeIgNZD-0-d58ebf97f3dd124b1ca81d9254a14c4e)
(12)由于则
5.若并且存在δ>0,当
时,有f(x)≥g(x),证明:A≥B,又若当
时,f(x)>g(x),是否一定成立A>B.
证明:(1)用反证法.假设A<B,则由
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1342.jpg?sign=1739524060-MNF1sVcMkKO3bXhH656mHN31vPlwCQee-0-5904853995f0366a1376475a032968c0)
及性质1,得使当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1346.jpg?sign=1739524060-lp4t3rYQ8xHJQXUKCeUZZTeJYwBpcESY-0-51439ce160a4e61ebcfab503b29b2b86)
这与已知:当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1349.jpg?sign=1739524060-1rSwHzxRYwvEUGV5iqENEUfr6JD9NmCw-0-53e41fec40b4e69a42f073b23600f161)
矛盾,故假设不成立,即成立.
(2)不一定.例:
①成立.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1351.jpg?sign=1739524060-dByKNilAdHLLxJJtpxb4gerzH35ikb7z-0-ebfb6330d408001c4bbba67ba6a308c7)
当时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1353.jpg?sign=1739524060-ApWUoCaG6OvRDUGmDrA7Qr39pXdFGfwB-0-5d5c16d8ff5378394186d89148351384)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1354.jpg?sign=1739524060-dIp7k4sliFpKlzy2AHsJfk2K6oedgorh-0-d15dff128fa1b3f2fb84fd39703693c6)
故A>B成立.
②不成立.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1355.jpg?sign=1739524060-7JzGO8p40TMJaj7AcazoSCriCjHy147P-0-5fd8391a301f95fd646428ea9132acb6)
当时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1357.jpg?sign=1739524060-4l4maeI9BPJ2X4uyAgfWhmUaC3ebQkuJ-0-8f9510ad275ff1711e62538ee996ea85)
又
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1358.jpg?sign=1739524060-f79uPCRBE0PcjP81RWFtWax6Y4WlqcH4-0-8624b0ef89adcc2744fd751c6295f152)
故A=B成立.
6.若证明
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1361.jpg?sign=1739524060-mhzX4r8Smpt1v5Eb8qvF1kQhDcJDmN07-0-228547127cfd3378928b863b50051772)
证明:考察
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1362.jpg?sign=1739524060-HrQLRpBk2Yr94nPtgJSSsblQJejRLyDh-0-6f686730a8ff7c7ebaae8006fd309495)
由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1363.jpg?sign=1739524060-YSwH3FlvV0yq7K1UreJOYuacdgYJ9niD-0-633161f2a4d98029709b503b38f69f4a)
故对当
时有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1366.jpg?sign=1739524060-wOgvywKFmUlgPmGxve4pFokTGyCsMpbf-0-6da33df03d2c87803520d76f5ade3ae1)
对上述当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1369.jpg?sign=1739524060-RwYqj6LCk1RUGsLo1pvjB7XjI6nxySSa-0-472845336d446ee53c8b80392e014964)
又据乘法运算:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1370.jpg?sign=1739524060-CaarGCQXdYhwRvedhBhgU2zQhF7rKY9b-0-2ab078ae99f017a0134fda156e34fc44)
再根据性质3,得当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1373.jpg?sign=1739524060-HKwCAkvUZoNqj44QKIDMC0svF3H0kfbJ-0-26d2e5d62aa9bc3feb15fe97972295c0)
取当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1376.jpg?sign=1739524060-SVvbVXPD6YxwHsz3ylHr8QlKhHm9Ls9d-0-472ea36909bb739543251bfd16a78a6c)
于是,对当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1379.jpg?sign=1739524060-6lcc66q4kRgbMhbqgw86ZfJVcWSlTXDJ-0-19e271a47b781715eb7b046cf1f52b3f)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1380.jpg?sign=1739524060-8hfCCGuj09g9Sil1lbYNjnGyRbDuhZEZ-0-7b621356dbe2d571063bec67f876496c)
7.(1)求f(x)在x=1的左右极限;
(2)求f(x)在x=0的左右极限.
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1383.jpg?sign=1739524060-767LL58QjvyoVjRmFijy5DOGKao4yTGD-0-28e881916da1ab42879da6ac94ad3b78)
8.说明下列函数在所示点的左右极限情形:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1384.jpg?sign=1739524060-kqIliDz11c2BImFN9ZudjC986C5Masaz-0-a78aeed0c6b88e61b9ba9283643fdc1a)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1385.jpg?sign=1739524060-mpjJc6VNu8ddcTXST65bfUdvkHcfo2V0-0-17a9cae548ddf49088f92e96ca6504b9)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1386.jpg?sign=1739524060-nU8VSlbJBhUudhujRD5KG5FG14Z8TYgH-0-de016e93369fa2b76b8589a5a99427fd)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1387.jpg?sign=1739524060-8wAvasRSr8kSyFdkT2jtl4jp5Y3M0DY4-0-2179d727cfcacb6bcddac55de8272e62)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1388.jpg?sign=1739524060-RfnbCWBJvaxqXcqYli2btTqBmdqzQrbp-0-120109dad894be9bf0e56f307f22bf72)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1389.jpg?sign=1739524060-EbAmppBtKAnZmfpaAl8s8ZbUDmI8NH2L-0-d90340dc6c3183ff50b6ea2e1aa12bf4)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1390.jpg?sign=1739524060-RLeqrk0VyR5MCoqDP1Nt4cqMe7NEfbia-0-3b890a069cbcb97c38c10f3fb42166b7)
(3)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1391.jpg?sign=1739524060-cREvIIgNa36jpDnCvvzHvIbfswOqNjjp-0-82096fa56f63ef56d1f38029c257b1ef)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1392.jpg?sign=1739524060-lJEOwLacx8WACxAwWwHKUH0VWbq1bt3c-0-9f15aaa5df59a27e2753f8d5f89c2a69)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1393.jpg?sign=1739524060-12V7WtNM2a8kaKsWDzSQFcIgYvAXwQaX-0-91fe1c0b272367ba7aa6c68cd3cd4121)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1394.jpg?sign=1739524060-SH9HXZaoSkRPyYYtKdLbvygahDqnLksl-0-d08e9da9f7c4e2fee5c957f0950d18a4)
(5)此函数在任一点的左右极限不存在.
设为R上任一点,由有理数和无理数在数轴上的稠密性,可知有理序列
无理序列
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1398.jpg?sign=1739524060-FNDSqAlboxrXq97iGgIapoZlwGRdTCis-0-4e93e9eeecf01a9a1fc89cdde24ad95a)
从而此函数在任一点的右极限不存在
同理,此函数在任一点的左极限也不存在,从而此函数在任一点的左右极限不存在.
(6)
9.讨论下列极限:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1400.jpg?sign=1739524060-gNGTrwiXqQpgIaEKJxGQo0ymQiPRwjag-0-0cb327d00351a83618b573dc698ffa7e)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1401.jpg?sign=1739524060-KcZpsPNxPU2X3X8xcmhpgfCeC6Ox6OUA-0-687a8d3330f391452c8018896cb888bc)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1402.jpg?sign=1739524060-eofv3gRIK9QWhNQcUyq7mIqPJpSh4tGa-0-8c95ae729bb5a0755b1777e28fae8cdf)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1403.jpg?sign=1739524060-l2u7YQNZ3pTqC2g0t6pC00Ib9GBr9vZA-0-4a2f88e333bba304f714acbb82797a7e)
解:(1)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1404.jpg?sign=1739524060-5Um3sJodTolmVpj5PomsVsQmWXlLNFGY-0-6cf39f1510c2ed8d501481a26676a204)
且sinx是有界量,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1405.jpg?sign=1739524060-XGwtfZ8fgpSvS3qQFKgQebPaNPAEiQBj-0-b30e120af863bf6b863b2387dfc4b076)
(2)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1406.jpg?sign=1739524060-CJpNKDJPvPmePN5Ab4JYhknucddDT8io-0-d6736bd63d81c3e314bbe0d02b5a68df)
若取则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1408.jpg?sign=1739524060-BMuXCRr7UF0vsZJSn7ApkRhsJQZjXQma-0-df3594a4d58b8d65c7e697f0ad1a0380)
若取
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1411.jpg?sign=1739524060-C8TbETXYurNUgyPzBv5Zw2cOzTTV3OM1-0-3c8ce833ccfbe2c1a5d79e0bf55b86fd)
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1413.jpg?sign=1739524060-rWCXHwBswV9u4c6tT5ZOokLCoxDlpp3G-0-d88836aba528305dea71f6f796864235)
不存在,从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1414.jpg?sign=1739524060-0rnzDZxP7aBHeJpGUxhUlvs2IW1b56vx-0-26e6b2cdf76675a0efe871fa139fad83)
不存在.
(3)由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1415.jpg?sign=1739524060-WxZDXo5cj6HP4rERWXecfTAAXJ9dyGQZ-0-702e46d2d5ad01188331cdb6e56e9605)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1416.jpg?sign=1739524060-nE7YJ7DSDegUWz9zDBavO34BkPgKptjx-0-ce870416a4be7050b52d578f1a699964)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1417.jpg?sign=1739524060-cpe91IlB08cMIRnfCBXpQgxkKf3KbciL-0-96af3d4eb3e62ca4cbb9c964abca85d0)
(4)取有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1419.jpg?sign=1739524060-CCVJ6er2BrjubMx3amShYfZ4ovaShZLi-0-56aea741453c49d1fa27589d79a6f050)
另取
有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1422.jpg?sign=1739524060-YQy8mxGO73lZrPpywnpl4l18ZeIK9G87-0-12f27e46f5e72e0f81a259f3f6e8658b)
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1423.jpg?sign=1739524060-djkPJypAwt0EL3Lx8XEhHFarbNwQhHvU-0-1a5fe1d4aadb85c8fc7c19aa218e5aab)
不存在.
10.由条件
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1425.jpg?sign=1739524060-eEswIeEJlGOUuB2WQgz8TMVTwI7Do8cd-0-74f013d27f36bc84bf95b105a03813c2)
求常数a和b.
解:由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1426.jpg?sign=1739524060-xUFLsvJMVFKHNuvTXFP65fPvpaXbEbVl-0-99f0a9ab02b282bfec2de8d7826af743)
则有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1428.jpg?sign=1739524060-pPTMR5WJdxCwHjFL1dBO8JECknhuQplp-0-e3f34dcef5937e477c3bbeae6dbff86b)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1429.jpg?sign=1739524060-TATS6luuOaw3gJpX0pf3ae36Z76krqQd-0-072ead28f854b9ecea24f4ddf8483e1f)
11.由条件
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1430.jpg?sign=1739524060-6D4CxwYnA00KVz4E1GtxKnr7T2LxQLAX-0-7857f0c001ec46ec452b89e3f7369d4e)
求常数
解:由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1432.jpg?sign=1739524060-yHshDWSj93H1XVuuBL74OpwyPuKAwRtB-0-2cf4238a9597e6b33c696497c469bbd1)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1433.jpg?sign=1739524060-oDE6UAkfHedeRtxMlQ8rbPNacATJ5Ya4-0-ab34f218bdb7f9c10f1761b73f7b676c)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1434.jpg?sign=1739524060-CWYfL7f9OW17bsBoPVLKUGiG7IypMftB-0-6932ad23cc9954a2f524ab8614fefb1b)
又据条件可得:若则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1436.jpg?sign=1739524060-5gqPOEknZvl1xyZdypX1q7S27EJxlFGQ-0-dd1d07fb986d57665e15c7894d38e6ac)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1437.jpg?sign=1739524060-75TfNInKc1AZGTT4vMd5io9j5XBcUItx-0-7069d08161b4696ef67631fb6a2c9cfb)
同理
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1438.jpg?sign=1739524060-Rqz2yFNheUh7EO1sQg2x4vvzxBHz5abl-0-e13eeefcb65ebc4e28f4a1418b4f8dd3)
12.若则称直线
是曲线
当
时的渐近线.利用这一方程推出渐近线存在的必要并且充分的条件;
证明:若曲线存在渐近线,则有
因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1444.jpg?sign=1739524060-aWNB3Q8PSmoUbiNxM8UbnjvcNj849u5b-0-3dc20a560ca016fc992e09663d6a4519)
令两端取极限并注意到(1)式,得
既求出了k,再从(1)式求得
(3)
反之,若(2)、(3)两式成立,立即可看出条件(1)成立.
故曲线y=f(x)当时存在渐近线y=kx+b的充分必要条件是极限
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1448.jpg?sign=1739524060-rIqy6LtKPhMHl4hV16dhn4hdpu1U7Gi8-0-ccda0ce0af2b80cc58f1332d1d9056da)
均成立.
13.若,证明:存在
,使得当
时,
成立.
证明:由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1454.jpg?sign=1739524060-EEH1Db9lOLaKn1KikYWpOH3JmcTqwota-0-4179b9580843dd5a1148755690185ac8)
故对给定的当x<-X时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1456.jpg?sign=1739524060-OMgwKkt4bOEGXBz5zAHuocy0tsrnKgSw-0-8eae27dc048a4695e16f4fd46de9a422)
即
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1457.jpg?sign=1739524060-P7eI9LgaHIBfjK5b0tOoJDy1WtENSlmL-0-5cd72eccda442b8771b3ac1c8f9fde57)
14.若证明:
;
证明:由于
故对
当又
故对上述
取对上述
有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1468.jpg?sign=1739524060-m1elMB0ksMnMPXUHk7nk9yeAnGQXzknl-0-e5cfd1747fe4e2f8404c4ea61155c2be)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1469.jpg?sign=1739524060-CA1IuGm9WENZDm30pFPFqiPCj0qDVPNV-0-08923429cec71f92b04592d1e3c8c981)
15.证明有
;
证明:由于
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1474.jpg?sign=1739524060-R1X4JJfg0QpyO4tQVUJ8GVPx5cMSs8wH-0-868e53929465b8b868d4ebeeaeeb8cf1)
故对
又故对上述
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1478.jpg?sign=1739524060-pqjSwD6jABDVphLyyrL68Ofs78lxE8go-0-0f4c4e6e0e598360312d9e73989fd445)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1479.jpg?sign=1739524060-0hORP0dmmRshenRiOm73LVfYbUlUSDlF-0-acfe81bc8b2900bab4820aa1c237536b)
至少有一个
特别地,取X为1,2,3,…,可得使得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1485.jpg?sign=1739524060-dWTaBKV6MmnF7dedy02edBcLbtuu9ASD-0-eaca2ff94bb62e3491f523681d6754f0)
有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1486.jpg?sign=1739524060-mh0EC7yoavFNc9QZtSKajJUfhyQ2Sik3-0-afc11f440f80fc02029d352dd72e2b5b)
从左边可以看出而从右边看出
与已知矛盾,则假设不成立,故
16.证明的充要条件是对任何数列
有
证明:
故对
又故对上述
从而
于是
至少有一个
特别地,取δ为可得
使得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1506.jpg?sign=1739524060-z9HhnqRqDPsrdlnmKPpeqREB1U7YP4Ov-0-68529ba05f02ce4e98d9ff28404ee0af)
从左边可以看出而从右边看出
与已知矛盾,则假设不成立,故
17.分别举出符合下列要求的各个函数
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1511.jpg?sign=1739524060-ZRXVbnRahYUSMu9hp50hsohLqV5ULvJP-0-987b0f2b5679b4cf4c0be9fad4cf8fb6)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1512.jpg?sign=1739524060-5J483hhxobPrYSQkZXmejKZbsyABxMRw-0-6ec149e151e24ba9c963326f1886f27b)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1513.jpg?sign=1739524060-KzJSZ0l6EncJQlDBtnxC90C8IapMUgJD-0-170b84e247bbfd098633c10773e6ab8a)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1514.jpg?sign=1739524060-S2SlrqRjis1xiE3sAOydhDtkH1UD0dgS-0-73c9fad01b622ef68d2ad4ada53b5e67)
不存在.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1515.jpg?sign=1739524060-JHJPMhv0CjUp64DVsFRk8Bof5fDeBnPA-0-cde85b6b17cc2b89e7685c6ad398c4a7)
(常数);
和
都不存在;
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1518.jpg?sign=1739524060-KyLGZx8NdJV0eomBKEnQTVdkp9KDo41v-0-c40a2f0ae1fdf12428e8073334862bb5)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1519.jpg?sign=1739524060-87a9w95iWaSrrwXXXVu08YJtLbOZKh25-0-5c126965a299f34b36a93a600aa4da38)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1520.jpg?sign=1739524060-UoZTqZJToVubm4ATeawngt3olxctSplK-0-09b912980bb7c6b5e22c4a3a1428f305)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1521.jpg?sign=1739524060-3O0J2xJIaaol1nvPYHqPRjx7Jp5UorCm-0-54190396f57bad45110d76c0aff492ad)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1522.jpg?sign=1739524060-oexp0LC1txlNgLHkXbZzrDAQgqTvQjQe-0-16a3e4c3cb62512be7ab5a594f0fd60b)
§3 连续函数
1.按定义证明下列函数在定义域内连续:
(1)
(2)
(3)
答:(1)由题知,的定义域为
,函数在
处,是连续的,下面来证明在
内,函数也是连续的
设为
内任一点,对
,取
,当
时,有
,故
在
点连续,又由于
为
内任一点,所以
在
内连续.故
在
连续
(2)设内任一点,
对故
在
点连续.
又由在
内的任意性,得
在
内连续.
(3)设
于是
若
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1549.jpg?sign=1739524060-QJoIXJUZG2WcIg5og6GWdW6Q5CHs9VWp-0-859576696a37d30c0c687db1180ad713)
设内任一点,
对有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1553.jpg?sign=1739524060-J98UWfoUMitZHJ92RlheeJFTgEm8xLW5-0-40f8bd583d5b4dcd2466c1fe73cd2db7)
故在
点连续.
又由内的任意性,得
在
内连续.
2.利用连续函数的运算,求下列函数的连续范围:
(1)
(2)
(3)
(4)
(5)
(6)
解:(1)因则当cos≠0时,y=tanx连续,故y=tanx的连续范围为
(2)若n>0,则得连续范围为
;若n≤0,则
连续,即它的连续范围为
(3)因secx的连续范围为的连续范围为
故的连续范围为
(4)当cosx>0时,连续,故
的连续范围为
(5)因ln(1+x)当x>-1时连续,当
时连续,故
的连续范围为
(6)因则当
时,
连续,故
的连续范围为
3.研究下列函数的连续性,并画出其图形:
(1)
(2)
(3)
(4)
解:(1)因
当x=2时,y=4,故函数在x=2连续;
当x≠2时,显然连续,
故在
内连续.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1596.jpg?sign=1739524060-t19zSyMjBfrDd3QWn15rmSjhV6r513us-0-eedf2e54eb7cd21966f8b8cfe809fa01)
图2-1
(2)当x≠0时,显然连续.又
故函数在x=0连续,于是
在
内连续.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1600.jpg?sign=1739524060-0TtPG6SiV73WnNmUgtRTqMoLYSwvfRBE-0-93ed684c337ddf9bec894fe46913a7b0)
图2-2
(3)因当x<0时,
显然连续,故此函数在除0以外连续,即在
内连续.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1607.jpg?sign=1739524060-iLP7hbhbBNOXkFpeoZ48ZM9PY5JVngg4-0-891c5797c4ea1ede4c66b3f9d81eab43)
图2-3
(4)因则
不存在,故x=k(k∈Z)为y=[x]的间断点,但在间断点处右连续
当时,y=[x]显然连续,故此函数在除k(k∈Z)外连续.
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1611.jpg?sign=1739524060-luynv21ScltCX9U16AEzUehS9WNbdqCg-0-ed153dc874c6d6d298dc5e1d02b304b4)
图2-4
4.若f(x)连续,和
是否也连续?又若
或
连续,f(x)是否连续?
解:(1)设f(x)在其定义域I上连续,为I上任一点
因f(x)在
而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1618.jpg?sign=1739524060-vxFFnRy2YZXi2DJZdRizr0YLv4X8cufN-0-f5d6d014c67da6f76f1a97de79b305ee)
即对有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1620.jpg?sign=1739524060-wj9GKsTekTKfScsSbK4VauVXrI232bB2-0-daa8feea7ec28d3b931b35e8396501fe)
故f(x)在点连续
又由在I上也连续
同样
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1623.jpg?sign=1739524060-4HUqNX1kNyLlNn9xsMm4LofVkVJwBLBZ-0-8f95290f6a8b7e35e4b813de9223f5d4)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1624.jpg?sign=1739524060-1SCgucZl8hVNwq742p0hQrcJTb50JHua-0-91118143b11d9f517d20e6aa37977991)
故在
点连续
又由在I上也连续
(2)反过来,若和
连续,f(x)不一定连续.
①不连续.例:均在
内连续,但f(x)在x=0点不连续;
②连续.例:f(x)=x,则在
内均连续.
5.(1)函数以f(x)当x=X0时连续,而函数g(x)当x=x0时不连续,问此二函数的和在x0点是否连续?
(2)当x=x0时函数f(x)和g(x)二者都不连续,问此二函数的和f(x)g(x)在点x0.是否必不连续?
解:(1)用反证法.假设f(x)+g(x)在点连续.
因f(x)当时连续,则由连续函数性质,得
当
时连续与已知矛盾.故假设不成立,即f(x)+g(x)在
点连续.
(2)不一定
①连续:例:在x=0都不连续,但f(x)+g(x)=0在x=0连续.
②不连续:例:在x=0都不连续,
在x=0不连续.
6.(1)函数f(x)在x0.连续,而函数g(x)在x0不连续;
(2)当x=x0时函数f(x)和g(x)二者都不连续,问此二函数的乘积f(x)g(x)在点x0.是否必不连续?
解:(1)不一定.
①连续:例:f(x)=0在x=0连续,在x=0不连续,但f(x)g(x)在x=0连续.
②不连续:例:f(x)=0在x=0连续,在x=0不连续,
在x=0不连续.
(2)不一定.
①连续:例:在x=0不连续,但f(x)g(x)=-1在x=0连续.
②不连续:例:在x=0都不连续,
在x=0不连续.
7.若f(x)在[a,∞]连续,并且存在,证明f(x)在[a,∞]有界.
证明:由于存在,不妨设
,则对
成立,从而得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1646.jpg?sign=1739524060-o4Oy58RFtrjquMpoCd7HtNpv59RDlsvA-0-adb5b2d51a1191e48f90d8a7d09593bf)
取内有界,且
又由于f(x)在上连续,故f(x)在
上有界,设其界为M>0,即
取
即f(x)在[a,∞)有界.
8.若对任一f(x)在
连续,问
(1)f(x)是否在[a,b]连续?
(2)f(x)是否在[a,b]连续?
解:(1)任取取
因对任一ε>0,f(x)在连续,故f(x)在
点连续
由的任意性,得f(x)在(a,b)内连续.
(2)不一定连续.
①不连续:例:f(x)在内连续,但f(x)在[0,1]上不连续,在x=0点断开.
②连续:例:f(x)在内连续,且f(x)在[1,2]上不连续.
9.若f(x)在x0点连续,并且f(x)>0,证明:存在x0的邻域
当
时
C为某个常数.
证明:由于f(x)在则设
对给定的当
时,有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1669.jpg?sign=1739524060-emoTyBYWvln943RCXsbeZEq8IoVJJDyT-0-a3c28005b462b6bacd583f69203b0141)
10.证明:若连续函数在有理点函数值为0,则此函数恒为0.
证明:设f(x)为实轴上的连续函数,为任意一个无理点.
由有理点在数轴上的稠密性,可以取无理数列,使得
因f(x)在
由点的任意性,得f(x)在所有无理点的函数值都为0.又f(x)在有理点的函数值为0,则此函数恒为0.
11.若f(x)在[a,b]连续,恒正,按定义证明在[a,b]连续.
证明:由于f(x)在[a,b]连续,恒正,则f(x)在(a,b)连续,存在,
,设
为
内任一点,则对
,当
时,有
,
又f(x)在[a,b]连续,则由闭区间连续函数性质2,可设f(x)在[a,b]上的最小值为m>0,即
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1684.jpg?sign=1739524060-P6A86IChcp3fG1mHkUsnxTirpvINwRGC-0-73916c6f650cf5997b121b64b10845f4)
故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1685.jpg?sign=1739524060-NzRkmQg4LvRBSt3LftXQOsXwk6C2Zhu7-0-8259500a9408b01f6935accb10916d15)
从而在
连续.
由在(a,b)内的任意性,得f(x)在[a,b]连续.
又故f(x)在[a,b)连续
又故f(x)在[a,b]连续
12.若f(x)和g(x)都在[a,b]连续,试证明以及
都在[a,b]连续.
证明:由于f(x)和g(x)都在[a,b]连续,故f(x)-g(x)和f(x)+g(x)都在[a,b]连续.
由第4题结论,有在[a,b]连续.
令
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1692.jpg?sign=1739524060-Q7VPUeJffvUhI0FdG77isdRGFh4B9khX-0-5b94b5492e8fdbc74a676c08beea1e32)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1693.jpg?sign=1739524060-aE9S6MbARaM05o1UEPZ5Uj6Lhnc2aZo2-0-f1664384538f21fc94e670dcefc3db3a)
故都在[a,b]连续.
13.若f(x)是连续的,证明对任何c>0,函数是连续的.
证明:由于
又由于f(x)是连续,且对任何c>0连续,则由上题结论,得min(f(x),c)连续,从而再由上题结论,得g(x)连续.
14.研究下列函数各个不连续点的性质(即为何种不连续点):
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
解:(1)因故x=-1为第二类不连续点(无穷间断点)
(2)因但y在x=-1点没有定义,故x=-1为可移不连续点
(3)因
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1714.jpg?sign=1739524060-l1AIPHuM194wfw6ILxJJNdfK4OgsBu41-0-b0fbb742a8e83ce2396c44c36d41e84d)
又故x=-2,x=1为第二类不连续点.
(4)因但y在x=0点无定义,故x=0为可移不连续点;
又故
为第二类不连续点.
(5)因在[0,1]间振荡,为振荡型极限,故此极限不存在,于是x=0为第二类不连续点.
(6)因x→k+0时-x→-k-0,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1720.jpg?sign=1739524060-WHN2FdddaQFFXBpCJSF3TFb6Uf326h6X-0-512db330c5d9b4115b646c33b10e620f)
又因x→k-0时,-x→-k+0,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1721.jpg?sign=1739524060-a4ZJJYWHQ6thjz8hYiqyrenxPff56iah-0-a74f0eff9c1e630606d954555728bd6b)
又当x=k时,故整数点均为可移不连续点.
(7)因故x=-1为第二类不连续点;
因不存在,故x=0为第二类不连续点.
(8)
因但y在x=1无定义,故x=1为可移不连续点;
因故x=0为第一类不连续点(条约间断点);
因故x=-1为第二类连续点.
(9)因此函数是以1为周期的函数,故可在区间[0,1]讨论,其它区间的情形与此类似.
在[0,1]上,分母为1的有理数有两个:分母为2的有理数有一个
分母为3的有理数有两个:分母为4的有理数有两个:
分母为5的有理数有四个:分母为6的有理数有两个:
总之,分母不超过k的有理数个数即分母不超过k的有理数只有有限个.
下面来证,在任一点
对设在[0,1]上,分母不超过k的有理数为
取,,则当
也就是x或者为无理数,或者为有理数
就有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1742.jpg?sign=1739524060-XfipNyK73dFzsisIB9tSauX1aFLQuNfr-0-a371d62a2f5bba0fde2ec0bbab289f1d)
故于是得:任何无理数点都是此函数的连续点,任何有理数都是此函数的可移不连续点.
(10)因故x=-1为第一类不连续点
(11)因故x=-1为第一类不连续点
(12)①
取有理点列
取无理点列
故不存在,从而
为函数的第二类不连续点
②
当x为无理数时,
当x为有理数时,对
使
有
连续.
15.当x=0时,下列函数f(x)无定义,试定义f(x)的数值,使重新定义
后的函数在x=0连续:
(1)
(2)
(3]
(4)
解:
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1762.jpg?sign=1739524060-GQ8mKW9dQEviVzIB5Gji8sRbgpYuxyKG-0-7ebf6f5ffbbb1a8c83f67386921b404e)
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1763.jpg?sign=1739524060-aYTw4wYRkkJRiql1Gz1YtB9NmWaUlwhD-0-205d72b702c1f2511cf3ed87725e1b4b)
16.若f(x)在[a,b]连续则在
中必有
使
证明:设
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1768.jpg?sign=1739524060-yKTzrSEj05ugCEI9YN69bU1Mx7bxVpwG-0-0498c4d491c6131ff5c2a98342a5b79b)
则
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1769.jpg?sign=1739524060-uNY62509QFQNLK9YccbZWctdNJorDARp-0-b8e4b6ec4893cb596b74f996f7b1cee4)
同理得
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1770.jpg?sign=1739524060-uwPXFbBjRq5ODvAnQmdba2Lr3MUsK5ca-0-c62dff1fb233e12ff5e3d981adde4535)
由于f(x)在上连续,故由介值定理知,必
使
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1773.jpg?sign=1739524060-65rfv6BRoxTDne7ZLoMhRb31q0zX5Orl-0-1e3a58d8ce3229553ffac9d6e508d7f7)
17.用一致连续定义验证:
(1)在[0,1]上是一致连续的;
(2)在(-∞.+∞)上是一致连续的;
(3)在(-∞,+∞)上不一致连续;
证明:(1)对任何
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1777.jpg?sign=1739524060-IWbIW2er0dHIQf4U6Q1V6Y5hzkVhJBFf-0-0efc525b3affbad0b3e8710d6998933f)
即亦即
对使得对
总有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1783.jpg?sign=1739524060-vqZgPm5rnO9LErJnQg6eLwpzNqgsIzns-0-d7117745919a1bec26d1c954a9b76a27)
从而在[0,1]上是一致连续的
(2)对任何
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1786.jpg?sign=1739524060-iwthfPFJFlscfLCL5xBXl4UA5ecDNAkg-0-cc328bc1af1be4fdc850bcc1b33456ae)
对使得对
总有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1789.jpg?sign=1739524060-1c0qZZt59zeKSweodU64FOqsC1JiIUlz-0-849ca44ce32108fb75187fbf144bd654)
从而f(x)=sinx在上是一致连续的.
(3)取对任何δ>0
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1793.jpg?sign=1739524060-zsjQMh0nEUP6XOahOxwz9RUyIZJQq5G8-0-a3ca0fd2a03e71352ca4a939344ae227)
故当n充分大时,一定有
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1795.jpg?sign=1739524060-cWV117YAlYrXkADqag9OK80ph5VQjh1a-0-02485408995be7bee809b6693cd6c4a5)
但
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1796.jpg?sign=1739524060-PI660iQVVBwVLJSKCPrsuYrI7G2bNIVE-0-93b0f77084fcef87bfdf4d7ca190abf7)
从而在
上不一致连续.
§4 无穷小量与无穷大量的阶
1.求下列无穷小量当x→0时的阶和主要部分:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
解:(1)由于故它是一个3阶无穷小量,它的主要部分为
(2)由于故它是一个2阶无穷小量,它的主要部分为
(3)由于故它是一个1阶无穷小量,它的主要部分为∣x∣.
(4)由于故它是一个
阶无穷小量,它的主要部分为
(5)由于故它是一个1阶无穷小量,它的主要部分为x.
(6)由于故它是一个3阶无穷小量,它的主要部分为
(7)由于故它是一个1阶无穷小量,它的主要部分为x.
2.当x→∞时,求下列变量的阶和主要部分:
(1)
(2)
(3)
(4)
(5)
解:(1)由于故它是一个6阶无穷大量,它的主要部分为
(2)由于故它是一个5阶无穷大量,它的主要部分为
(3)由于故它是一个
阶无穷大量,它的主要部分为
(4)由于故它是一个
阶无穷大量,它的主要部分为
(3)由于故它是一个2阶无穷大量,它的主要部分为
3.试证:当时,
(1)
(2)
(3)
(4)
证明:(1)由于于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1840.jpg?sign=1739524060-Y6rMr4UlCg669opmOjGse2O14nqAieSR-0-5127c1a653bdeb90040f7585408a4b1c)
又m>n>0,故
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1841.jpg?sign=1739524060-ct68XOQ3Y38tAd8NQSLC3AzNkSTbUfq3-0-8ad874fd059f63f489afea4f30c4240f)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1842.jpg?sign=1739524060-A6aTSMgGHe6DQPt2c2MXTQyHznodVTe0-0-339dd93c5b089782d2ad337838d4f07e)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1843.jpg?sign=1739524060-ldeNlTf6GN6d3NCQ6bzh6DB7F3TfT9GS-0-45ddd95955b3d286e7949a3eb05f468a)
(2)由于于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1845.jpg?sign=1739524060-HiWxfYML9WZZEGsgu2RqeHL38b57i5yH-0-ba2bdf0704c7632fbb39539345f94fdd)
于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1846.jpg?sign=1739524060-msT33o8hal4bdnPwNmpW2GOj4hfqLiTV-0-c46f490839f89e60c5dc063d1c6f5508)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1847.jpg?sign=1739524060-xGSLAWKbFV8KUu0stlX86XrWiTf21Kgf-0-4e45bed982cd5d81379c8b891a76a560)
(3)又
故f(x)有界,于是
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1850.jpg?sign=1739524060-mDswnLMHhrn3AIkj86h3mTgThjezIwAD-0-0e418fd49e0abaaf6ed364d4a2637df6)
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1851.jpg?sign=1739524060-z18PxSj3caiXki8MyXVtUpBm4WQhuzPu-0-134116b464cb6c180668eeecaecd71b4)
(4)由o(1)于是无穷小量,则o(1)→0于是
从而
![](https://epubservercos.yuewen.com/81CE93/15436378805512406/epubprivate/OEBPS/Images/image1853.jpg?sign=1739524060-FnPEtQi9sdg7v9PbTgrD82gLB5fd17nX-0-28bc7997a6b186aafbe8f327769cef66)