![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739296253-AyGy9kVsCj15nvvCDdAJQioPJl5JmHrO-0-2a9cf54afa87294e5c92022fcd79b731)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1739296253-H7oibnEonjYGTgY692rl40rga77cIyLD-0-ec9ae2f58da765832d5179b67df20b61)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1739296253-RIk9qgIr4jmlvQOVzQw6aeMsdDNKnlcV-0-d1d2571518d11a176e9b2b062a4b90da)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1739296253-fF4Tv761qZlgtQziyvdeOg3SiphrmzEW-0-1101f3a56da6ee7e34f94b3e8e458e18)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1739296253-rpWeVJ7HVdzNJIKat67arbPofmf3OPZw-0-aee040746312ba42191efc4a62fdb6d8)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1739296253-Jc42de2czEH8Ns8G8fVFiQtpxlxAAayD-0-21a08d1af64b65c1244d1959a2b6dd5c)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1739296253-h7eV6sEONlKugVP8nEfAGX07iLYjXCgK-0-d90f9c66e3b13308b4bdc2371921145d)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1739296253-0IrdqXoBTmUq4K7bZZJCx3CDvwA5ZSSP-0-4054d4f2bc29076ab2d335d6ca001359)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1739296253-hEm4tswNaLMnX8vIrLCJjqXKTUgRyzIP-0-7769d51b6694486ea4fa78ab9fd4740a)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1739296253-pgAtTjd21ure7jX0LX6bMPJN9zZMb2gm-0-b29f29746e615a2c14fb722accd301f3)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1739296253-TK1huEnpcAsE42ZXVTipI9Zc9Z6mi0bY-0-f60379aa7eef06a853b2585d30520dd9)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1739296253-CheHtF3ZVM9NhPwzupV0SmBPdJSErIma-0-6ee7ac16556648f303a7be55a8210373)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1739296253-17CiBucWam3FaPwbvG6wA9IMWpTZ9i3Y-0-01652c08daaaa6c00c64526c8f94c993)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1739296253-p4GZYIFzRdE5RuwdabXz2UGv8mOTLadV-0-e77b8cf6ede03363e3b889ac00059926)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1739296253-tTiT3BeHyPLd0CtRPI8sR8WEuGqamhRu-0-b53491e9b59fbd5b0e94f0ec9e7ef815)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1739296253-V070deUJcyP5Gm4RllnAqL9jGTuMkiHy-0-44ef022f152ad1ddf3eef305313641b0)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1739296253-CWmjYjBzbyBkgOmFtHaj7tlH0AGbs1i9-0-a57d92730dbacb15e05f516b064845bf)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1739296253-nxcxDgVesPO4zS4ASRpZSCXBwETqUHRK-0-5c0f2ee22dc8417258d00a64d47f97c1)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1739296253-kJzmEllhTrrAz23DoGxhS427lhEOCjBY-0-7922b1063caf34e097d38f258212322c)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1739296253-tiwUiSpZgBKFNVvqBA3o7rtzNggEkfYk-0-1bda57fb0e575db2dd854dd554a5567d)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1739296253-egHecPwwDhV9EpE70DGJx1XiwQtmb98k-0-b47d2ae2f0a474e2e372a12031347021)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1739296253-u9XiZYxkHKFUKGFQ9rjW5i7LG2T4fbYC-0-3f80ff26025ab529cc96b5c20de8225f)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1739296253-XCG3c6FMx3CveKsDYMYSQ7aqrJtEfwc6-0-c1c1262394ed0a8bd0493ac52f592410)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1739296253-c1GwUm4WL02qDnc3hngObVjK3jU9EyJQ-0-83b284239addb1473917e8026e2f5840)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739296253-0lOpEU09ll7zvpQTfI8Xfoo3w4ApHwAp-0-16ba748410f68d8ed3766494a11994ce)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739296253-DvsRD9N4jEUzauZaopmQMe1It3z9JLZe-0-aef75bbf443839f704122f54f2b7f12d)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739296253-6nH3QoQ8IVLTJZoCIvIZrGOaAaA2yRy4-0-acaf71bb895bd73239bcc7f85194d352)