![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第七届全国大学生数学竞赛预赛(2015年非数学类)
试题
一、计算下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739296729-VxRwyqyimpNPrRhNj3A3XsIvUa1qOGrl-0-21cc65f5d73188a162f70748446ce625)
(2)设函数z=z(x,y)由方程所决定,其中F(u,v)具有连续的偏导数,且xFu+yFv≠0,则
.(本小题结果要求不显含F及其偏导数)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面与曲面z=x2+y2所围区域的体积为________.
(4)函数在(-5,5]内的傅里叶级数在x=0收敛的值为________.
(5)设区间(0,+∞)上的函数u(x)定义为,则u(x)的初等函数表达式为________.
二、(12分)设M是以三个正半轴为母线的半圆锥面,求其方程.
三、(12分)设f(x)在(a,b)内二次可导,且存在常数α,β使得对于∀x∈(a,b),f′(x)=αf(x)+βf″(x),证明f(x)在(a,b)内无穷次可导.
四、(14分)求幂级数的收敛域与和函数.
五、(16分)设函数f在[0,1]上连续,且.试证:
(1)∃x0∈[0,1],使得|f(x0)|>4;(2)∃x1∈[0,1],使得|f(x1)|=4.
六、(16分)设f(x,y)在x2+y2≤1上有连续的二阶偏导数,.若f(0,0)=0,fx(0,0)=fy(0,0)=0,证明
.
参考答案
一、解 (1)由于,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739296729-aVlYmtc6QsLgmqAznUo65XRqFd894961-0-59457e59740865dd79375abe5abc9cd9)
由夹逼准则,可得.
(2)方程两端关于x求偏导数,可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0003.jpg?sign=1739296729-qwTHVt74a1O1dlfckFYDxpMuRhluNBhp-0-ec7a0abf0641ca157f0c3df83114c4fc)
类似地,对y求偏导数可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0004.jpg?sign=1739296729-1FdSIdCMi4e3G9IW35bp0uqG6TPSyRaN-0-dc4373a5a7e462588e57b666e9cfddae)
于是,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0005.jpg?sign=1739296729-F2G8tLFa867YBKUnyM1cFzB6qegpKC7Y-0-dc118250c7325a3a96081518443afa99)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面为
2(x-1)-2(y+1)-(z-3)=0,即z=2x-2y-1.
联立得所围区域在xOy面上的投影D为
D={(x,y)|(x-1)2+(y+1)2≤1}.
所求体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0007.jpg?sign=1739296729-c0fNiJBJREqPowNJzEQoD867QOmmee6g-0-039b55d1a441434f5fd86c1955453416)
令x-1=rcost,y+1=rsint,则dσ=rdtdr,D:所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0009.jpg?sign=1739296729-UAIRWO5qXsvPImOhoDInZnEen4iHD8qY-0-8508580f6b3e17373c4b56ee6b9275a3)
(4)由狄利克雷收敛定理,得.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0011.jpg?sign=1739296729-iSMI3p8ZMmW7aQSvhiiQqEXBCi6p5Oz3-0-f9b91981313d5ec59a28c0319f6f47e8)
所以.
二、解 显然O(0,0,0)为M的顶点,A(1,0,0),B(0,1,0),C(0,0,1)在M上.由A、B、C三点决定的平面x+y+z=1与球面x2+y2+z2=1的交线L是M的准线.
设P(x,y,z)是M上的点,(u,v,w)是M的母线OP与L的交点,则OP的方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0013.jpg?sign=1739296729-3TVZE8xhX1aaVpO1zO4eG9tv6jl3A7ww-0-b2c7170af5a9f5537b5ab0e47d01d5c3)
代入准线方程,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0014.jpg?sign=1739296729-K13xmwI3MNWj8X8Yg2PNBxxwUvVogI9W-0-960e52bc584988cc7aa6dda71d2e5f0b)
消去t,得圆锥面M的方程为xy+yz+zx=0.
三、证明 (1)若β=0,则∀x∈(a,b),有
f′(x)=αf(x),f″(x)=α2f(x),…,f(n)(x)=αnf(x),…,
从而f(x)在(a,b)内无穷次可导.
(2)若β≠0,则∀x∈(a,b),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0001.jpg?sign=1739296729-h0wwiSjuiWfNsVXTSeWqlKM0GnFimhD3-0-38c316e4e309a153060d7b6e6bcd18fd)
(1)
其中.
因为(1)式右端可导,从而有
f‴(x)=A1f″(x)+B1f′(x).
设f(n)(x)=A1f(n-1)(x)+B1f(n-2)(x),n>1,则
f(n+1)(x)=A1f(n)(x)+B1f(n-1)(x).
所以,f(x)在(a,b)内无穷次可导.
四、解 因,所以收敛半径R=+∞,收敛域为(-∞,+∞).由
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0004.jpg?sign=1739296729-pGSIYnvw967mJxgjxrQBX2Ofz5bJZZcG-0-b6e87ec638f70c3e2709ad3e47f4516c)
及幂级数的收敛域都为(-∞,+∞),得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0006.jpg?sign=1739296729-KnuSa4h2XsWnkc83emSgbOYqmxBk5nxO-0-3f8dc362f2157050ab0e992bf7b85783)
用S1(x),S2(x),S3(x)分别表示上式右端三个幂级数的和,依据ex的幂级数展开式可得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0007.jpg?sign=1739296729-IOd360w07U5UwpnSmWKnzIzDv4fVl1Jq-0-4e2c2d78419794bf093dd4f265d5c9c9)
综合上述讨论,可得幂级数的和函数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0008.jpg?sign=1739296729-CY96ZvBY1EtNGj313SFERYZ65oOaBNSC-0-599cc97529c2112e4a84c8ecb66378f2)
五、证明 (1)反证法.若∀x∈[0,1],|f(x)|≤4,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0009.jpg?sign=1739296729-yPaE0KUJqmJYAHZMT7wemH7dtaPc8flH-0-ba1704dd2bb45fb3785f5eb35b2f2c6f)
因此,.而
,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0012.jpg?sign=1739296729-XzsDSCLpcCcK5E66087Ncay04JPlt2Q8-0-a5b336ff451ca364174a11f06675f906)
所以对于任意的x∈[0,1],|f(x)|=4.又由f(x)的连续性知,
f(x)≡4 或 f(x)≡-4.
这与条件矛盾.所以∃x0∈[0,1],使得
|f(x0)|>4.
(2)先证∃x2∈[0,1]使得|f(x2)|<4.若不然,∀x∈[0,1],|f(x)|≥4,则f(x)≥4或f(x)≤-4恒成立,这与矛盾.
再由f(x)的连续性及(1)的结果,利用介值定理,可得∃x1∈[0,1]使得|f(x1)|=4.
六、证明 在(0,0)处展开f(x,y)得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1739296729-jEQbGEsYvmrZB2pNQ3uyTcFxOrGB7UDi-0-cfe426f20fc91ab98ff3f86f378b15ca)
记,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1739296729-d4cWQuc13a0UD9zU4nKmrcgtFUuB3nRR-0-3bd245f592dd846f033357ba59fa40df)
由于以及
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0005.jpg?sign=1739296729-FPEFosjmbt8UFk1bXmLUvwMRHZ7SJRSm-0-2d8ef958ba11c3e8e9a4031fab7308db)
于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0006.jpg?sign=1739296729-jotKSJCcWNIo8XeVGO8SyXCnVJ4CswtA-0-160c003277fffffe0abf7901cb91011b)
即,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0008.jpg?sign=1739296729-psocEmWhxXDy2AqebX8Keamzf7qzPhff-0-3649a22c6e79a52b9a149ce5bdb57a56)