![中国财政分权的成就与代价:地方政府激励的视角](https://wfqqreader-1252317822.image.myqcloud.com/cover/897/26397897/b_26397897.jpg)
附录
A.帕累托最优配置解的求解过程(单一公共品)
此时拉格朗日函数可写为
求一阶条件如下:
其中λ1= 1,上述一阶条件可简化为
B.政府目标偏向GDP增长时的均衡(单一公共品)
此时拉格朗日函数可以写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P45_21061.jpg?sign=1738971239-id0hbXsbWRFycJIFidxGCftQUodSpBsM-0-0c9fc5fad600b9179ea88222820463bc)
分别对x i,g i,k i和t i求偏导,可以得到:
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P45_1612.jpg?sign=1738971239-qyM507Cgp0MBA0a716yOoQGR0nao8IH6-0-40b968ac46974156d73583a12f81c0e4)
(A1)式可以写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P46_1619.jpg?sign=1738971239-xArmvuz4pHzK0nL0l4q7sDHdEkP3aXhn-0-2f8d7007f7d0b02af3b487d2daf8f321)
从而得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P46_21062.jpg?sign=1738971239-QbRzZnORt3jwWJ1lp54bgsWPiLzpbuHA-0-a445d605763c6f581bff4509c3e08b0c)
C.帕累托最优配置解的求解过程(两种公共品)
拉格朗日函数可写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P46_21063.jpg?sign=1738971239-FbGgT5LVMB4A99w2czCwURSviwEZ0VjA-0-7f364ee978eef561eebcd9f73989b64a)
求一阶条件如下:
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P46_21064.jpg?sign=1738971239-TDBrO38BDWcuJOg0ep3gv8aMZZytAUdK-0-52b958b72c6ed6058a565c397c4f83ba)
其中λ1= 1,从而上述一阶条件可写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P46_21065.jpg?sign=1738971239-mWuuH6JP5IrQhsQaoOOYs4429h5KEHW2-0-578eee230d59657a1cee8bd28b98a2a4)
D.政府目标是最大化居民效用时的均衡配置(两种公共品)
此时拉格朗日函数可以写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P46_21066.jpg?sign=1738971239-THNrokx5BC6xtnbaBDwqATnf7MoEe8Ws-0-8106a4926684c0b27193dd69b861bca7)
分别对x i,g i,k i,t i和b i求偏导,可以得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P46_21067.jpg?sign=1738971239-6Iy8hbLqAiTZkoqhCFutJE6UnCvG7XSq-0-81400fe23fe70be7ec779aa89b311395)
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_21068.jpg?sign=1738971239-tOR5nEnzK9fkmH8G3Ljfkm4Pg7CSJqvz-0-aedb8187ed0274a85d91758a9ddcfdc1)
此时,(A2)式可以写为- u ix f ikk k i+ u ig f ikk k i(1- t i)+ u ig t i f ikk k i+ u ig t i f ik=
0,即
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_21069.jpg?sign=1738971239-fXz9DWYHBmvtwy2kvWdqUiGakhikAKqq-0-855e0ae2ee26d380df4475a422004c55)
(A3)式可以进一步写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_1690.jpg?sign=1738971239-U8PrfeF0OgCh4NFnEepwNY9bkqsJYoYQ-0-ae49d20b8ef8549400cd8484842767ec)
进一步化简得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_1692.jpg?sign=1738971239-MXuJzhIwHuSZrnOXnUGUGFiXwcR8t3Cl-0-4001da4ecb77cd6e73452444780cf362)
即
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_21070.jpg?sign=1738971239-8BRA9uYBGbT3QIit8W0ieWlXPgAcUQwG-0-e43e359d210527ed8efb933deffc9871)
E.政府目标偏向GDP的增长(两种公共品)
则拉格朗日函数是
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_21071.jpg?sign=1738971239-sfksPjfMbOb5kWcEineVgZoB7arKQmed-0-172ee69ae61a7e6311e0be03007ccf1c)
分别对x i,g i,k i,t i和b i求偏导,可以得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_21072.jpg?sign=1738971239-eeTzBDl9hVboCYO2Wdltd75dn0jx5RXM-0-e9bbce60100dc6795946d4f07fa6e470)
(A4)式可以写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P47_1719.jpg?sign=1738971239-UctOleaATlxEl8XIdcRFN7y2VgnQdudP-0-4009fcb40c548164096f204c5d870531)
稍加变换即可得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_21073.jpg?sign=1738971239-hpodbpqLCoKl2ooLitMc932RGZYXYJCU-0-b824dda2648e0202e16ecc094769693d)
(A5)式可以写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_1741.jpg?sign=1738971239-cJqKT7eUVBhE0w5wIs7honywnjKEM2NS-0-c0a861f1854e2cfd0703c345da76696a)
稍加变换即可得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_21075.jpg?sign=1738971239-zu78bCOcBVlnIOsD19jS8ybC8bwA9AZT-0-30225c7afe52a6458e57543e386aad4d)
F.两个地方政府策略互动的非对称均衡解
假定两个地方是异质的,第一个地方的生产函数仍然是f(k 1),第二个地方的生产率是第一个地方的A倍,即生产函数是Af(k 2)。这时第一个地方政府的目标是
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_21079.jpg?sign=1738971239-jZJYUUBUPH5eahXhkNZfrhGJaUDBAejS-0-ea3003ec2d9633d035c97ab0abb1a0f9)
可以求得一阶条件是
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_21080.jpg?sign=1738971239-lrz59BilQqTz77rMcLWfSLaoW3c0vwLb-0-d328cd0ef1c3615a269cb9403ac3830e)
稍加变换即可得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_21082.jpg?sign=1738971239-eL9PxIDWaJUorZVSe7JWM3QdJiIIC0Xt-0-235378ff36845774c7b855e0a885d133)
由均衡时资本的回报率在两个地区相等,可以得到f 1k(1- t 1)= A f 2k(1-t 2),又由
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_1802.jpg?sign=1738971239-KOpk67N1iws3xIiamJpGtCg8zQjjCZRG-0-c11b5b0a6dad5862dcc4a8949653d87d)
可以得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_21083.jpg?sign=1738971239-7RqsbyLjURdQQ1lQNXtgQnGYGLCv9bYm-0-e9a2e82a14cb912a518216e228428db3)
(A7)式两边同时对t 1求导数,得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P48_21084.jpg?sign=1738971239-ZjJQvSJKX4OZHMkBlWYvGoZmUFbaf3ce-0-89a47e9f1ab4fcc55114eb2c3cb6ed86)
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P49_21085.jpg?sign=1738971239-UVpQAjC1A3bp9fDBt9ldGMJ4gqIIeFdM-0-a91072f9473a0012083bf868175cbfbf)
因此当满足此时地方政府的公共品提供会不足。当A= 1时,就退化成对称均衡。
G.引入政府消费支出(两种公共品)
此时拉格朗日函数可写为
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P49_21091.jpg?sign=1738971239-UjUKy9Nm4gBmaGd9j57U2J2P71D371Qg-0-334f99ea3404a70d05689de16bd4159b)
分别对x i,g i,k i,t i,b i和c i求偏导,可以得到:
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P49_21092.jpg?sign=1738971239-FOTXC3TkgzHmKrBUfnnhIbc54Aa5yeMF-0-d86fbb80b86d4cbb58e3f3b6a4d80ca9)
由(A9)式、(A10)式和(A12)式可得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P49_1885.jpg?sign=1738971239-xK1k04CPDMnBX9FDviSol0e8GVG9xDbw-0-3115016ac4a4d098afbc1118d486a789)
稍加变换即可得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P49_21093.jpg?sign=1738971239-0K1JMutqiZXwBPf29NhqTL4LfyRj9RDg-0-d9b5549e583f55cb038835cad96a866e)
由(A11)式和(A12)式可得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P49_1902.jpg?sign=1738971239-7nJ3ojWuQpbK5hJpakgEPE6LCEL00C7t-0-6206f4f3e6caabae7669416a176c9381)
将(A13)式代入(A14)式得到
![formula](https://epubservercos.yuewen.com/4BC842/14872990405372606/epubprivate/OEBPS/Images/P49_21095.jpg?sign=1738971239-AjDVa2dNGliMSmNFSICSwrYZgmcWDqUY-0-8a9349326b0af1cd0eb724c960fc7041)